摘要:
Provided are a slide material in which the joining strength between a Bi-containing copper alloy layer and a substrate is improved, and a method for manufacturing the slide material. The slide material according to the present invention has a substrate and a copper alloy layer. The copper alloy layer comprises a copper alloy containing 4.0-25.0 mass % of Bi and has a structure in which Bi phases are scattered in a copper alloy structure. The contact area ratio of Bi phases of the copper alloy layer at the joining interface with the substrate is not more than 2.0%. The slide material is manufactured by casting a molten copper alloy onto a substrate and causing the copper alloy to solidify unidirectionally.
摘要:
Provided are an anti-fatigue in-situ aluminium-based nanocomposite material for heavy-load automobile hubs and a preparation method therefor. By means of the fine adjustment of components and a forming process, in situ nano-compositing, micro-alloying and rapid compression moulding techniques are combined. That is, after the addition of elements Zr and B, an in-situ reaction occurs to form a nano ZrB2 ceramic reinforcement which is distributed in aluminium crystals and crystal boundaries and bonded to a metallurgical interface kept firm with the matrix. Moreover, with rare earth elements Er and Y and element Zr as addition ingredients and after the increase in the contents of Cr and Mn, a structure having fine aluminium crystal grains with a large number of micro-alloyed nano precipitated particles contained in the grains, fine and round eutectic silicon grains and a fine Mg2Si phase mainly dispersed inside the grains is obtained in the process of the rapid compression moulding and thermal treatment of the hubs; and thus, the tensile strength, the yield strength and the fatigue strength of an alloy are effectively improved.
摘要:
The present invention achieves an object of continuously supplying a melt from a melt nozzle over a long period of time by adjusting the contents of Mn and S in an Fe—B—Si—C-type amorphous alloy ribbon. An amorphous alloy ribbon of the present invention includes a composition containing Fe, Si, B, C, Mn, S, and inevitable impurities, the composition containing, with respect to 100.0 atm % of the total amount of Fe, Si, B, and C, 3.0 atm % or more and 10.0 atm % or less of Si, 10.0 atm % or more and 15.0 atm % or less of B, and 0.2 atm % or more and 0.4 atm % or less of C, the amorphous alloy ribbon having a content ratio of Mn of more than 0.12 mass % and less than 0.15 mass %, and a content ratio of S of 0.0036 mass % or more and less than 0.0045 mass %, the amorphous alloy ribbon having a thickness of 10 μm or more and 40 μm or less, and a width of 100 mm or more and 300 mm or less.
摘要:
The present invention provides a method for making internal passages for use in investment casting processes, especially for gas turbine components such as blades or vanes. The apparatus comprises a first mold cavity having grooves formed therein, a second mold cavity having a shape complementary to the final casting design and ceramic cores. Each groove of the first mold cavity has a depth equal to a radius of certain number of ceramic cores which correspond to cooling channels. The ceramic cores are placed in the first mold cavity and fugitive wax is injected for temporary positioning of the cores. Two fugitive wax segments are formed about the cores. The fugitive segments locate the ceramic cores in the second mold cavity, and wax is injected about the cores and locating segments to form a pattern for investment casting process.
摘要:
A method for producing iron metal castings, wherein an expendable mold having a cavity for holding casting material is inserted into an opened multi-part permanent mold, the permanent mold is closed, the cavity is filled with casting material, wherein a supporting device partially protruding into the cavity is partially overcast, the expendable mold is cooled in the permanent mold after the filling, the permanent mold is opened during the cooling, after the liquidus temperature has been fallen below at the earliest, and the expendable mold is nondestructively removed from the permanent mold together with the casting, the expendable mold is further cooled together with the solidified casting while hanging on the supporting device, at least until the microstructure formation of the casting is concluded, the casting is demolded by removing the expendable mold.
摘要:
The subject of the invention is a process for the production of at least partly thin-walled and aluminium castings with sand moulding technology by gravity casting, which allows producing casts with 100 times or favourably 200-400 times larger overall dimensions in case of 1-3 mm wall thickness. The main idea of the process is that sand mould containing mould cavity is provided, melt of aluminium content is produced, the melt is introduced into the mould cavity at several points through a gating system of narrowing cross section. A further subject of the invention is a sand mould fitted with a gating system to produce at least partly thin-walled castings with sand moulding technology, by gravity casting. The wall thickness of thin-walled segments is 1-3 mm and the largest dimension is more than a 100 but favourably at least 200-400 multiple of the wall thickness. The main idea behind the sand mould with a gating system is that it contains a mould cavity allowing the production of at least partly thin-walled castings, and is equipped with a gating system, which is composed of at least two sprues and one ingate to each having a porthole into the mould cavity and in liquid contact with the sprues.
摘要:
A method for fabricating a cast component with a cooling channel is provided. The method includes forming a shell mold over a pattern-ceramic matrix composite (CMC) elongated core arrangement to define a cavity in the shell mold. The pattern-CMC elongated core arrangement includes a pattern-forming material with a CMC elongated core disposed therein. The pattern-forming material in the cavity is replaced with metal via a casting process to form the cast component with the CMC elongated core disposed therein defining the cooling channel. The CMC elongated core is removed from the cast component to open the cooling channel for fluid communication.
摘要:
A method for manufacturing a light alloy wheel that includes a substantially annular rim part and a disc part that is joined to one edge of the rim part on an inner side and is to be attached to an axle. The method includes a molten metal pouring step for pouring a light alloy molten metal from a sprue opened into a mold cavity formed into a shape of the rim part, and a forced cooling step for, after the molten metal pouring step, forcibly cooling the light alloy molten metal poured into the mold cavity formed into the shape of the rim part such that one predetermined cooling unit of a plurality of cooling units provided along an entire circumference on an outer side or an inner side of the mold cavity formed into the shape of the rim part is first operated and an other cooling unit thereof is then operated.
摘要:
A method for manufacturing hollow ingot for retaining ring of large generator by electroslag remelting, comprising the following steps: (1) preparing consumable electrode assemblies; (2) melting slag into molten slag; (3) inserting one consumable electrode assembly into an electroslag remelting hollow ingot mold; (4) switching on two transformers; (5) pouring the molten slag into the electroslag remelting hollow ingot mold; (6) forming a current circuit among a stub, the consumable electrode assembly and a water-cooled bottom plate; (7) forming a current circuit among the upper segment, the water-cooled bottom plate and the transformer; (8) regulating the output current and voltage of the two transformers; (9) starting a withdrawing device to withdraw; (10) exchanging the consumable electrode assembly; (11) inserting a subsequent consumable electrode assembly into the molten slag, and repeating steps (8) to (10) until withdrawing is completed.
摘要:
Some embodiments provide methods and systems for casting articles. One example of a method includes providing and positioning a thermal blanket within a mold cavity and then introducing a molten material into the mold cavity and into contact with the thermal blanket. The method allows the molten material to remain in a molten state during a dwell time that extends from the introduction of the molten material at least until the mold cavity is filled. In another example, a method of using a thermal blanket includes keeping a molten material in a molten state during a dwell time extending from first introduction of the molten material until pressurization. Systems including a variety of mold types, one or more thermal blankets, and in some cases preforms and/or inserts are also provided. Also described is a novel thermal blanket and method of manufacturing the same.