Abstract:
Apparatus are provided for receiving power from an external source. The apparatus includes a first electrical contact exposed to an exterior power source, a second electrical contact hardwired to an electrical bus, a separation device in physical contact with both the first electrical contact and the second electrical contact and conditionally insulating the first contact from the second contact and an electrical circuit configured to detect a voltage of the exterior power source and to physically modify the separation device to electrically connect the second contact to the exterior power source when a condition is met.
Abstract:
A system includes control modules, a low-voltage communications bus, e.g., a CAN bus of a vehicle, a voltage sensor that measures a bus voltage and outputs 2.5-3.5 VDC high-data and 1.5-2.5 VDC low-data, and a host electronic control unit (ECU). The host ECU detects a recoverable fault using a data pattern in the bus voltage data when the data is outside of a calibrated range, and recalibrates the sensor. Recalibration may be by adjustment to a scaling factor and/or a bias value. Non-recoverable “stuck-at-fault”-type or “out-of-range”-type faults may be detected using the pattern, as may be a ground offset fault. A method includes measuring the bus voltage using the sensor, comparing the output data to a range to detect the fault, and isolating a sensor fault as a recoverable fault using the data pattern when the data is outside of the range. The sensor is then be recalibrated.
Abstract:
Preventing spoofing in an automotive network includes monitoring, by electronic control unit, data packets on a bus in the automotive network. Upon determining, in response to the monitoring, that a data packet is from a source other than the electronic control unit, the preventing spoofing in the automotive network includes generating and transmitting a diagnostic message to at least one module in the automotive network over the bus, the diagnostic message instructing the at least one module to take no action on the data packet.
Abstract:
A method is disclosed for detecting ground faults in a communications system. The method includes measuring a predetermined number of voltage points; determining if the measured voltage points represent recessive or dominant bits; identifying which of the predetermined number of voltage points represent inter-frame bits and which represent frame data bits based on whether the measured voltage points are recessive or dominant; calculating a maximum average voltage for the inter-frame bits; calculating an average frame voltage for all dominant bits within a frame; determining a high average dominant voltage count based on a number of frames for which the average frame voltage is greater than a high voltage threshold; and determining if a ground fault exists based on the average frame voltage and the high average dominant voltage count.
Abstract:
Preventing spoofing in an automotive network includes monitoring, by electronic control unit, data packets on a bus in the automotive network. Upon determining, in response to the monitoring, that a data packet is from a source other than the electronic control unit, the preventing spoofing in the automotive network includes generating and transmitting a diagnostic message to at least one module in the automotive network over the bus, the diagnostic message instructing the at least one module to take no action on the data packet.
Abstract:
A system includes control modules, a low-voltage communications bus, e.g., a CAN bus of a vehicle, a voltage sensor that measures a bus voltage and outputs 2.5-3.5 VDC high-data and 1.5-2.5 VDC low-data, and a host electronic control unit (ECU). The host ECU detects a recoverable fault using a data pattern in the bus voltage data when the data is outside of a calibrated range, and recalibrates the sensor. Recalibration may be by adjustment to a scaling factor and/or a bias value. Non-recoverable “stuck-at-fault”-type or “out-of-range”-type faults may be detected using the pattern, as may be a ground offset fault. A method includes measuring the bus voltage using the sensor, comparing the output data to a range to detect the fault, and isolating a sensor fault as a recoverable fault using the data pattern when the data is outside of the range. The sensor is then be recalibrated.
Abstract:
A method is disclosed for detecting ground faults in a communications system. The method includes measuring a predetermined number of voltage points; determining if the measured voltage points represent recessive or dominant bits; identifying which of the predetermined number of voltage points represent inter-frame bits and which represent frame data bits based on whether the measured voltage points are recessive or dominant; calculating a maximum average voltage for the inter-frame bits; calculating an average frame voltage for all dominant bits within a frame; determining a high average dominant voltage count based on a number of frames for which the average frame voltage is greater than a high voltage threshold; and determining if a ground fault exists based on the average frame voltage and the high average dominant voltage count.