Abstract:
A diagnostic system of a vehicle includes an impedance module and a diagnostic module. The impedance module determines an impedance of a sensing element of an exhaust gas oxygen sensor based on a response of the sensing element to a change in current through the sensing element. The diagnostic module selectively diagnoses a fault associated with the exhaust gas oxygen sensor based on the impedance of the sensing element.
Abstract:
A diagnostic system of a vehicle includes an impedance module and a diagnostic module. The impedance module determines an impedance of a sensing element of an exhaust gas oxygen sensor based on a response of the sensing element to a change in current through the sensing element. The diagnostic module selectively diagnoses a fault associated with the exhaust gas oxygen sensor based on the impedance of the sensing element.
Abstract:
A system according to the principles of the present disclosure includes a pump control module, an actuator control module, and a torque reserve module. The pump control module switches a water pump between on and off. The water pump circulates coolant through an engine when the water pump is on. The actuator control module controls a first actuator of the engine based on a first torque request and that controls a second actuator of the engine based on a second torque request. The torque reserve module adjusts a torque reserve before the water pump is switched on or off based on a change in engine load expected when the water pump is switched on or off. The torque reserve is a difference between the first torque request and the second torque request
Abstract:
A system according to the principles of the present disclosure includes an error count module and a sensor diagnostic module. The error count module increases an error count when an actual air/fuel ratio generated by an oxygen sensor monitoring an exhaust system of an engine is different than a desired air/fuel ratio. The error count module selectively adjusts a rate at which the error count is increased based on an ambient temperature. The sensor diagnostic module diagnoses a fault in the oxygen sensor when the error count is greater than a first predetermined count.
Abstract:
A system according to the principles of the present disclosure includes an error count module and a sensor diagnostic module. The error count module increases an error count when an actual air/fuel ratio is different from a desired air/fuel ratio and selectively adjusts the error count based on an actual engine speed. An oxygen sensor generates a signal indicating the actual air/fuel ratio. The sensor diagnostic module diagnoses a fault in the oxygen sensor when the error count is greater than a first predetermined count.
Abstract:
A diagnostic system for a vehicle includes an error module, an equivalence ratio (EQR) module, a threshold determination module, and a fault indication module. The error module determines an error value based on a difference between an amount of oxygen in exhaust measured by an exhaust gas oxygen sensor (EGO) upstream of a catalyst and an expected value of the amount. The EQR module selectively controls fuel injection based on the error value. The threshold determination module determines an error threshold based on a flow rate of fuel vapor from a vapor canister to an intake manifold of an engine. The fault indication module selectively indicates that a fault is present in the EGO sensor based on the error value and the error threshold.
Abstract:
A diagnostic system for an engine of a vehicle includes a temperature determination module, a comparison module, and a fault indication module. The temperature determination module receives an indication of whether one or more cylinders within the engine are deactivated and selects a first temperature threshold based on the indication. The comparison module selectively determines whether a temperature of engine coolant is less than the first temperature threshold. The fault indication module diagnoses a fault in response to the comparison module determining that the temperature of the engine coolant is less than the first temperature threshold.
Abstract:
A system according to the principles of the present disclosure includes a pump control module, an actuator control module, and a torque reserve module. The pump control module switches a water pump between on and off. The water pump circulates coolant through an engine when the water pump is on. The actuator control module controls a first actuator of the engine based on a first torque request and that controls a second actuator of the engine based on a second torque request. The torque reserve module adjusts a torque reserve before the water pump is switched on or off based on a change in engine load expected when the water pump is switched on or off. The torque reserve is a difference between the first torque request and the second torque request.
Abstract:
A diagnostic system for a vehicle includes an error module, an equivalence ratio (EQR) module, a threshold determination module, and a fault indication module. The error module determines an error value based on a difference between an amount of oxygen in exhaust measured by an exhaust gas oxygen sensor (EGO) upstream of a catalyst and an expected value of the amount. The EQR module selectively controls fuel injection based on the error value. The threshold determination module determines an error threshold based on a flow rate of fuel vapor from a vapor canister to an intake manifold of an engine. The fault indication module selectively indicates that a fault is present in the EGO sensor based on the error value and the error threshold.
Abstract:
A system according to the principles of the present disclosure includes an error count module and a sensor diagnostic module. The error count module increases an error count when an actual air/fuel ratio is different from a desired air/fuel ratio and selectively adjusts the error count based on an actual engine speed. An oxygen sensor generates a signal indicating the actual air/fuel ratio. The sensor diagnostic module diagnoses a fault in the oxygen sensor when the error count is greater than a first predetermined count.