Abstract:
A human monitoring system includes a plurality of cameras and a visual processor. The plurality of cameras are disposed about a workspace area, where each camera is configured to capture a video feed that includes a plurality of image frames, and the plurality of image frames are time-synchronized between the respective cameras. The visual processor is configured to receive the plurality of image frames from the plurality of vision-based imaging devices and determine an integrity score for each respective image frame. The processor may then isolate a foreground section from two or more of the views, determine a principle body axis for each respective foreground section, and determine a location point according to a weighted least squares function amongst the various principle body axes.
Abstract:
A human monitoring system includes a plurality of cameras and a visual processor. The plurality of cameras are disposed about a workspace area, where each camera is configured to capture a video feed that includes a plurality of image frames, and the plurality of image frames are time-synchronized between the respective cameras. The visual processor is configured to identify the presence of a human within the workspace area from the plurality of image frames, generate a motion track of the human within the workspace area, generate an activity log of one or more activities performed by the human throughout the motion track, and compare the motion track and activity log to an activity template that defines a plurality of required actions. The processor then provides an alert if one or more actions within the activity template are not performed within the workspace area.
Abstract:
A radar anti-spoofing system for an autonomous vehicle includes a plurality of radar sensors that generate a plurality of input detection points representing radio frequency (RF) signals reflected from objects and a controller in electronic communication with the plurality of radar sensors. The controller executes instructions to determine time-matched clusters that represent objects located in an environment surrounding the autonomous vehicle based on the input detection points from the plurality of radar sensors. The controller determines an adjusted signal to noise (SNR) measure for a specific time-matched cluster by dividing an SNR of the specific time-matched cluster by a range measurement of the specific time-matched cluster. The controller determines a velocity-ratio measure of the time-matched cluster by dividing a motion-based velocity by a Doppler-frequency velocity, and identifies the time-matched cluster as either a ghost object or a real object.
Abstract:
A radar anti-spoofing system for an autonomous vehicle includes a plurality of radar sensors that generate a plurality of input detection points representing radio frequency (RF) signals reflected from objects and a controller in electronic communication with the plurality of radar sensors. The controller executes instructions to determine time-matched clusters that represent objects located in an environment surrounding the autonomous vehicle based on the input detection points from the plurality of radar sensors. The controller determines an adjusted signal to noise (SNR) measure for a specific time-matched cluster by dividing an SNR of the specific time-matched cluster by a range measurement of the specific time-matched cluster. The controller determines a velocity-ratio measure of the time-matched cluster by dividing a motion-based velocity by a Doppler-frequency velocity, and identifies the time-matched cluster as either a ghost object or a real object.
Abstract:
A radar anti-spoofing system for an autonomous vehicle includes a plurality of radar sensors that generate a plurality of input detection points representing radio frequency (RF) signals reflected from objects and a controller in electronic communication with the plurality of radar sensors. The one or more controllers execute instructions to determine a signal to noise ratio (SNR) distance ratio for the input detection points generated by the plurality of radar sensors, where a value of the SNR distance ratio is indicative of an object being a ghost vehicle. The one or more controllers also determine an effective particle number indicating a degree of particle degradation for the importance sampling for each variable that is part of the state variable. In response to determining the effective particle number is equal to or less than a predetermined threshold, the one or more controllers estimate a ghost position for the ghost vehicle.
Abstract:
A human monitoring system includes a plurality of cameras and a visual processor. The plurality of cameras are disposed about a workspace area, where each camera is configured to capture a video feed that includes a plurality of image frames, and the plurality of image frames are time-synchronized between the respective cameras. The visual processor is configured to receive the plurality of image frames from the plurality of vision-based imaging devices and determine an integrity score for each respective image frame. The processor may then isolate a foreground section from two or more of the views, determine a principle body axis for each respective foreground section, and determine a location point according to a weighted least squares function amongst the various principle body axes.
Abstract:
A method of mitigating jamming of a reflected energy ranging system for an autonomous vehicle is presented. The system comprises at least one transmission antenna, at least two receiving antennas, and a controller comprising a processor and a non-transitory computer-readable medium. The method comprises emitting an energy signal with the transmitter antenna, contacting a target with the energy signal, and reflecting the energy signal off the target and back towards the receiving antennas as a reflected energy signal. The method further comprises receiving a composite energy signal comprising at least the reflected energy signal and a jamming energy signal with the at least two receiving antennas, analyzing the composite energy signal with the processor to blindly extract at least the reflected energy signal and the jamming energy signal, and identifying which of at least the reflected energy signal and the jamming energy signal corresponds to the target with the processor.
Abstract:
A radar anti-spoofing system for an autonomous vehicle includes a plurality of radar sensors that generate a plurality of input detection points representing radio frequency (RF) signals reflected from objects and a controller in electronic communication with the plurality of radar sensors. The one or more controllers execute instructions to determine a signal to noise ratio (SNR) distance ratio for the input detection points generated by the plurality of radar sensors, where a value of the SNR distance ratio is indicative of an object being a ghost vehicle. The one or more controllers also determine an effective particle number indicating a degree of particle degradation for the importance sampling for each variable that is part of the state variable. In response to determining the effective particle number is equal to or less than a predetermined threshold, the one or more controllers estimate a ghost position for the ghost vehicle.
Abstract:
A method of mitigating jamming of a reflected energy ranging system for an autonomous vehicle is presented. The system comprises at least one transmission antenna, at least two receiving antennas, and a controller comprising a processor and a non-transitory computer-readable medium. The method comprises emitting an energy signal with the transmitter antenna, contacting a target with the energy signal, and reflecting the energy signal off the target and back towards the receiving antennas as a reflected energy signal. The method further comprises receiving a composite energy signal comprising at least the reflected energy signal and a jamming energy signal with the at least two receiving antennas, analyzing the composite energy signal with the processor to blindly extract at least the reflected energy signal and the jamming energy signal, and identifying which of at least the reflected energy signal and the jamming energy signal corresponds to the target with the processor.
Abstract:
A method of constructing a probabilistic representation of the location of an object within a workspace includes obtaining a plurality of 2D images of the workspace, with each respective 2D image being acquired from a camera disposed at a different location within the workspace. A foreground portion is identified within at least two of the plurality of 2D images, and each foreground portion is projected to each of a plurality of parallel spaced planes. An area is identified within each of the plurality of planes where a plurality of projected foreground portions overlap. These identified areas are combined to form a 3D bounding envelope of an object. This bounding envelope is a probabilistic representation of the location of the object within the workspace.