-
公开(公告)号:US20150026212A1
公开(公告)日:2015-01-22
申请号:US13960302
申请日:2013-08-06
Applicant: GOOGLE INC.
Inventor: Michael Fink , Niv Efron , Eyal Fink , Alex Gontmakher , Anatoly Vorobey , Yossi Matias , Jack Wright Menzel
IPC: G06F17/30
CPC classification number: G06F17/30483 , G06F17/30864 , G06F21/53 , G06F21/74
Abstract: Systems and methods offer a search system with third-party provided search applications that are triggered in response to specified queries and run at the search system. For example, a method may include determining that a query triggers a third party search application hosted at the search system, extracting a parameter from the query based on a query template, executing the third party search application with the parameter in a sandboxed manner at the search system to generate a third-party formatted answer for the query, and providing the third-party formatted answer as a search result for the query. The third party may provide the query template, parameter attributes, and the third party formatted answer. The third party search application may be stored at the search system and include the query template, a data store, the parameter attributes, and instructions for accessing the data store using the parameter.
Abstract translation: 系统和方法为搜索系统提供了第三方提供的搜索应用程序,这些应用程序是响应指定的查询触发并在搜索系统上运行的。 例如,方法可以包括确定查询触发在搜索系统处托管的第三方搜索应用,基于查询模板从查询中提取参数,在沙盒方式下执行具有沙盒方式的参数的第三方搜索应用 搜索系统为查询生成第三方格式的答案,并将第三方格式的答案提供为查询的搜索结果。 第三方可以提供查询模板,参数属性和第三方格式的答案。 第三方搜索应用可以存储在搜索系统中,并且包括查询模板,数据存储,参数属性以及使用参数访问数据存储的指令。
-
2.
公开(公告)号:US20140267348A1
公开(公告)日:2014-09-18
申请号:US14216637
申请日:2014-03-17
Applicant: GOOGLE INC.
Inventor: Alex Gontmakher , Andrin von Rechenberg
IPC: G06T5/00
CPC classification number: G06T5/002 , G06T17/00 , G06T2207/20182 , G06T2210/36
Abstract: Methods and systems for fractional level of detail assignment are described herein. A method embodiment for fractional level of detail (LOD) assignment includes obtaining a set of features and image data at a range of LOD values, assigning one or more fractional LOD values to the obtained features and providing the features and the image data at the fractional LOD values. The embodiment also includes hashing an identifier associated with each feature and computing a hash cutoff value by mapping the range of LOD levels onto a range of integers. A system embodiment includes a LOD assigner to assign fractional LOD values to features in image data and to provide the features and the image data at the fractional LOD values. The system embodiment further includes a retrieval engine to return features with a range of LOD values that include the fractional LOD values to the LOD assigner.
Abstract translation: 本文描述了分数级细节分配的方法和系统。 用于分数级别细节(LOD)分配的方法实施例包括在LOD值的范围内获得一组特征和图像数据,将一个或多个分数LOD值分配给所获得的特征,并将分数的特征和图像数据提供 LOD值。 该实施例还包括散列与每个特征相关联的标识符,并且通过将LOD级别的范围映射到整数范围来计算散列截止值。 系统实施例包括LOD分配器,以将分数LOD值分配给图像数据中的特征,并且以分数LOD值提供特征和图像数据。 该系统实施例还包括检索引擎,以向LOD分配器返回具有包括分数LOD值的一系列LOD值的特征。
-
公开(公告)号:US10121230B2
公开(公告)日:2018-11-06
申请号:US14216637
申请日:2014-03-17
Applicant: GOOGLE INC.
Inventor: Alex Gontmakher , Andrin von Rechenberg
Abstract: Methods and systems for fractional level of detail assignment are described herein. A method embodiment for fractional level of detail (LOD) assignment includes obtaining a set of features and image data at a range of LOD values, assigning one or more fractional LOD values to the obtained features and providing the features and the image data at the fractional LOD values. The embodiment also includes hashing an identifier associated with each feature and computing a hash cutoff value by mapping the range of LOD levels onto a range of integers. A system embodiment includes a LOD assigner to assign fractional LOD values to features in image data and to provide the features and the image data at the fractional LOD values. The system embodiment further includes a retrieval engine to return features with a range of LOD values that include the fractional LOD values to the LOD assigner.
-
公开(公告)号:US09552729B2
公开(公告)日:2017-01-24
申请号:US14145370
申请日:2013-12-31
Applicant: Google Inc.
Inventor: Alex Gontmakher , Frederick Peter Brewin , Noam Ben Haim
CPC classification number: G08G1/127 , G01C21/3423 , G01C21/3438 , G06Q10/025 , G06Q10/047 , G06Q50/30
Abstract: An exemplary method includes determining whether real-time vehicle location information deviates from at least one of historical real-time vehicle location information or scheduled vehicle location information. The exemplary method further includes generating scheduling information for a user based on user data and the public transportation data, determining that the real-time vehicle location information deviates from at least one of the historical real-time vehicle location information or the scheduled vehicle location information by more than a threshold deviation, and updating the scheduling information for the user based on the user data, the public transportation data, and the determined deviation.
Abstract translation: 一种示例性方法包括确定实时车辆位置信息是否偏离历史实时车辆位置信息或调度车辆位置信息中的至少一个。 该示例性方法还包括基于用户数据和公共交通数据为用户生成调度信息,确定实时车辆位置信息偏离历史实时车辆位置信息或调度车辆位置信息中的至少一个 超过阈值偏差,并且基于用户数据,公共交通数据和所确定的偏差来更新用户的调度信息。
-
-
-