Abstract:
Methods, including computer programs encoded on a computer storage medium, for improving speech recognition based on external data sources. In one aspect, a method includes obtaining an initial candidate transcription of an utterance using an automated speech recognizer and identifying, based on a language model that is not used by the automated speech recognizer in generating the initial candidate transcription, one or more terms that are phonetically similar to one or more terms that do occur in the initial candidate transcription. Additional actions include generating one or more additional candidate transcriptions based on the identified one or more terms and selecting a transcription from among the candidate transcriptions.
Abstract:
In some examples, a computing device includes at least one processor; and at least one module, operable by the at least one processor to: output, for display at an output device, a graphical keyboard; receive an indication of a gesture detected at a location of a presence-sensitive input device, wherein the location of the presence-sensitive input device corresponds to a location of the output device that outputs the graphical keyboard; determine, based on at least one spatial feature of the gesture that is processed by the computing device using a neural network, at least one character string, wherein the at least one spatial feature indicates at least one physical property of the gesture; and output, for display at the output device, based at least in part on the processing of the at least one spatial feature of the gesture using the neural network, the at least one character string.
Abstract:
Embodiments pertain to automatic speech recognition in mobile devices to establish the presence of a keyword. An audio waveform is received at a mobile device. Front-end feature extraction is performed on the audio waveform, followed by acoustic modeling, high level feature extraction, and output classification to detect the keyword. Acoustic modeling may use a neural network or a vector quantization dictionary and high level feature extraction may use pooling.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining hotword suitability. In one aspect, a method includes receiving speech data that encodes a candidate hotword spoken by a user, evaluating the speech data or a transcription of the candidate hotword, using one or more predetermined criteria, generating a hotword suitability score for the candidate hotword based on evaluating the speech data or a transcription of the candidate hotword, using one or more predetermined criteria, and providing a representation of the hotword suitability score for display to the user.
Abstract:
The present disclosure describes a teleconferencing system that may use a virtual participant processor to translate language content of the teleconference into each participant's spoken language without additional user inputs. The virtual participant processor may connect to the teleconference as do the other participants. The virtual participant processor may intercept all text or audio data that was previously exchanged between the participants may now be intercepted by the virtual participant processor. Upon obtaining a partial or complete language recognition result or making a language preference determination, the virtual participant processor may call a translation engine appropriate for each of the participants. The virtual participant processor may send the resulting translation to a teleconference management processor. The teleconference management processor may deliver the respective translated text or audio data to the appropriate participant.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for language modeling of complete language sequences. Training data indicating language sequences is accessed, and counts for a number of times each language sequence occurs in the training data are determined. A proper subset of the language sequences is selected, and a first component of a language model is trained. The first component includes first probability data for assigning scores to the selected language sequences. A second component of the language model is trained based on the training data, where the second component includes second probability data for assigning scores to language sequences that are not included in the selected language sequences. Adjustment data that normalizes the second probability data with respect to the first probability data is generated, and the first component, the second component, and the adjustment data are stored.
Abstract:
A processing system receives an audio signal encoding a portion of an utterance. The processing system receives context information associated with the utterance, wherein the context information is not derived from the audio signal or any other audio signal. The processing system provides, as input to a neural network, data corresponding to the audio signal and the context information, and generates a transcription for the utterance based on at least an output of the neural network.
Abstract:
A computer-implemented input-method editor process includes receiving a request from a user for an application-independent input method editor having written and spoken input capabilities, identifying that the user is about to provide spoken input to the application-independent input method editor, and receiving a spoken input from the user. The spoken input corresponds to input to an application and is converted to text that represents the spoken input. The text is provided as input to the application.
Abstract:
Methods and systems for sharing of adapted voice profiles are provided. The method may comprise receiving, at a computing system, one or more speech samples, and the one or more speech samples may include a plurality of spoken utterances. The method may further comprise determining, at the computing system, a voice profile associated with a speaker of the plurality of spoken utterances, and including an adapted voice of the speaker. Still further, the method may comprise receiving, at the computing system, an authorization profile associated with the determined voice profile, and the authorization profile may include one or more user identifiers associated with one or more respective users. Yet still further, the method may comprise the computing system providing the voice profile to at least one computing device associated with the one or more respective users, based at least in part on the authorization profile.
Abstract:
A processing system receives an audio signal encoding a portion of an utterance. The processing system receives context information associated with the utterance, wherein the context information is not derived from the audio signal or any other audio signal. The processing system provides, as input to a neural network, data corresponding to the audio signal and the context information, and generates a transcription for the utterance based on at least an output of the neural network.