Abstract:
The present disclosure relates to training a speech recognition system. A system that includes an automated speech recognizer and receives data from a client device. The system determines that at least a portion of the received data is likely sensitive data. Before the at least a portion of the received data is deleted, the system provides the at least a portion of the received data to a model training engine that trains recognition models for the automated speech recognizer. After the at least a portion of the received data is provided, the system deletes the at least a portion of the received data.
Abstract:
Characteristics of a speaker are estimated using speech processing and machine learning. The characteristics of the speaker are used to automatically customize a user interface of a client device for the speaker.
Abstract:
The present disclosure relates to training a speech recognition system. A system that includes an automated speech recognizer and receives data from a client device. The system determines that at least a portion of the received data is likely sensitive data. Before the at least a portion of the received data is deleted, the system provides the at least a portion of the received data to a model training engine that trains recognition models for the automated speech recognizer. After the at least a portion of the received data is provided, the system deletes the at least a portion of the received data.
Abstract:
The present disclosure relates to training a speech recognition system. One example method includes receiving a collection of speech data items, wherein each speech data item corresponds to an utterance that was previously submitted for transcription by a production speech recognizer. The production speech recognizer uses initial production speech recognizer components in generating transcriptions of speech data items. A transcription for each speech data item is generated using an offline speech recognizer, and the offline speech recognizer components are configured to improve speech recognition accuracy in comparison with the initial production speech recognizer components. The updated production speech recognizer components are trained for the production speech recognizer using a selected subset of the transcriptions of the speech data items generated by the offline speech recognizer. An updated production speech recognizer component is provided to the production speech recognizer for use in transcribing subsequently received speech data items.
Abstract:
The present disclosure relates to training a speech recognition system. One example method includes receiving a collection of speech data items, wherein each speech data item corresponds to an utterance that was previously submitted for transcription by a production speech recognizer. The production speech recognizer uses initial production speech recognizer components in generating transcriptions of speech data items. A transcription for each speech data item is generated using an offline speech recognizer, and the offline speech recognizer components are configured to improve speech recognition accuracy in comparison with the initial production speech recognizer components. The updated production speech recognizer components are trained for the production speech recognizer using a selected subset of the transcriptions of the speech data items generated by the offline speech recognizer. An updated production speech recognizer component is provided to the production speech recognizer for use in transcribing subsequently received speech data items.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for caching speech recognition scores. In some implementations, one or more values comprising data about an utterance are received. An index value is determined for the one or more values. An acoustic model score for the one or more received values is selected, from a cache of acoustic model scores that were computed before receiving the one or more values, based on the index value. A transcription for the utterance is determined using the selected acoustic model score.
Abstract:
Disclosed are apparatus and methods for processing spoken speech. Input speech can be received at a computing system. During a first pass of speech recognition, a plurality of language model outputs can be determined by: providing the input speech to each of a plurality of language models and responsively receiving a language model output from each language model. A language model of the plurality of language models can be selected using a classifier operating on the plurality of language model outputs. During a second pass of speech recognition, a revised language model output can be determined by: providing the input speech and the language model output from the selected language model to the selected language model and responsively receiving the revised language model output from the selected language model. The computing system can generate a result based on the revised language model output.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for caching speech recognition scores. In some implementations, one or more values comprising data about an utterance are received. An index value is determined for the one or more values. An acoustic model score for the one or more received values is selected, from a cache of acoustic model scores that were computed before receiving the one or more values, based on the index value. A transcription for the utterance is determined using the selected acoustic model score.
Abstract:
The present disclosure relates to training a speech recognition system. One example method includes receiving a collection of speech data items, wherein each speech data item corresponds to an utterance that was previously submitted for transcription by a production speech recognizer. The production speech recognizer uses initial production speech recognizer components in generating transcriptions of speech data items. A transcription for each speech data item is generated using an offline speech recognizer, and the offline speech recognizer components are configured to improve speech recognition accuracy in comparison with the initial production speech recognizer components. The updated production speech recognizer components are trained for the production speech recognizer using a selected subset of the transcriptions of the speech data items generated by the offline speech recognizer. An updated production speech recognizer component is provided to the production speech recognizer for use in transcribing subsequently received speech data items.
Abstract:
Characteristics of a speaker are estimated using speech processing and machine learning. The characteristics of the speaker are used to automatically customize a user interface of a client device for the speaker.