Multiscale quantization for fast similarity search

    公开(公告)号:US11874866B2

    公开(公告)日:2024-01-16

    申请号:US18081376

    申请日:2022-12-14

    Applicant: Google LLC

    CPC classification number: G06F16/3347 G06F16/313 G06F16/319 G06N20/00

    Abstract: The present disclosure provides systems and methods that include or otherwise leverage use of a multiscale quantization model that is configured to provide a quantized dataset. In particular, the multiscale quantization model can receive and perform vector quantization of a first dataset. The multiscale quantization model can generate a residual dataset based at least in part on a result of the vector quantization. The multiscale quantization model can apply a rotation matrix to the residual dataset to generate a rotated residual dataset that includes a plurality of rotated residuals. The multiscale quantization model can perform reparameterization of each rotated residual in the rotated residual dataset into a direction component and a scale component. The multiscale quantization model can perform product quantization of the direction components of the plurality of rotated residuals, and perform scalar quantization of the scale components of the plurality of rotated residuals.

    Multiscale quantization for fast similarity search

    公开(公告)号:US11531695B2

    公开(公告)日:2022-12-20

    申请号:US16638802

    申请日:2018-05-14

    Applicant: Google LLC

    Abstract: The present disclosure provides systems and methods that include or otherwise leverage use of a multiscale quantization model that is configured to provide a quantized dataset. In particular, the multiscale quantization model can receive and perform vector quantization of a first dataset. The multiscale quantization model can generate a residual dataset based at least in part on a result of the vector quantization. The multiscale quantization model can apply a rotation matrix to the residual dataset to generate a rotated residual dataset that includes a plurality of rotated residuals. The multiscale quantization model can perform reparameterization of each rotated residual in the rotated residual dataset into a direction component and a scale component. The multiscale quantization model can perform product quantization of the direction components of the plurality of rotated residuals, and perform scalar quantization of the scale components of the plurality of rotated residuals.

    Communication Efficient Federated Learning
    4.
    发明申请

    公开(公告)号:US20200242514A1

    公开(公告)日:2020-07-30

    申请号:US16850053

    申请日:2020-04-16

    Applicant: Google LLC

    Abstract: The present disclosure provides efficient communication techniques for transmission of model updates within a machine learning framework, such as, for example, a federated learning framework in which a high-quality centralized model is trained on training data distributed overt a large number of clients each with unreliable network connections and low computational power. In an example federated learning setting, in each of a plurality of rounds, each client independently updates the model based on its local data and communicates the updated model back to the server, where all the client-side updates are used to update a global model. The present disclosure provides systems and methods that reduce communication costs. In particular, the present disclosure provides at least: structured update approaches in which the model update is restricted to be small and sketched update approaches in which the model update is compressed before sending to the server.

    Multiscale Quantization for Fast Similarity Search

    公开(公告)号:US20200183964A1

    公开(公告)日:2020-06-11

    申请号:US16638802

    申请日:2018-05-14

    Applicant: Google LLC

    Abstract: The present disclosure provides systems and methods that include or otherwise leverage use of a multiscale quantization model that is configured to provide a quantized dataset. In particular, the multiscale quantization model can receive and perform vector quantization of a first dataset. The multiscale quantization model can generate a residual dataset based at least in part on a result of the vector quantization. The multiscale quantization model can apply a rotation matrix to the residual dataset to generate a rotated residual dataset that includes a plurality of rotated residuals. The multiscale quantization model can perform reparameterization of each rotated residual in the rotated residual dataset into a direction component and a scale component. The multiscale quantization model can perform product quantization of the direction components of the plurality of rotated residuals, and perform scalar quantization of the scale components of the plurality of rotated residuals.

    Sampled Softmax with Random Fourier Features

    公开(公告)号:US20210019654A1

    公开(公告)日:2021-01-21

    申请号:US16931862

    申请日:2020-07-17

    Applicant: Google LLC

    Abstract: Systems and methods for low bias negative sampling of classes according to the sampled softmax method are described herein. The systems and methods can include training a machine-learned model for classifying inputs into one or more classes of a plurality of classes, each of the plurality of classes having an associated class embedding in a plurality of class embeddings. The systems and methods can include selecting, by the one or more computing devices, one or more negative classes from the plurality of classes based at least in part on a probability distribution approximating a softmax distribution, wherein the probability distribution is determined based at least in part on a Random Fourier Features map.

    Communication efficient federated learning

    公开(公告)号:US10657461B2

    公开(公告)日:2020-05-19

    申请号:US16335695

    申请日:2017-09-07

    Applicant: Google LLC

    Abstract: The present disclosure provides efficient communication techniques for transmission of model updates within a machine learning framework, such as, for example, a federated learning framework in which a high-quality centralized model is trained on training data distributed overt a large number of clients each with unreliable network connections and low computational power. In an example federated learning setting, in each of a plurality of rounds, each client independently updates the model based on its local data and communicates the updated model back to the server, where all the client-side updates are used to update a global model. The present disclosure provides systems and methods that reduce communication costs. In particular, the present disclosure provides at least: structured update approaches in which the model update is restricted to be small and sketched update approaches in which the model update is compressed before sending to the server.

Patent Agency Ranking