DATA LIFECYCLE MANAGEMENT WITHIN A CLOUD COMPUTING ENVIRONMENT
    1.
    发明申请
    DATA LIFECYCLE MANAGEMENT WITHIN A CLOUD COMPUTING ENVIRONMENT 有权
    数据生命周期管理在云计算环境中

    公开(公告)号:US20110314069A1

    公开(公告)日:2011-12-22

    申请号:US12817245

    申请日:2010-06-17

    IPC分类号: G06F17/30

    CPC分类号: G06F17/30082

    摘要: Embodiments of the present invention provide lifecycle storage management for data within a Cloud computing environment. Specifically, a set of policies can be defined that allow for automatic valuation of the data and migration of the data between a set of storage tiers. Before a policy set is deployed, it can be assessed to determine effects it will have on cost, performance, and data location. Based on data characteristics and access patterns, a set of policy recommendations can be provided that predict the value of the data over time, and offer an improved migration strategy for moving the data between the set of storage tiers as the value of the data changes.

    摘要翻译: 本发明的实施例为云计算环境中的数据提供生命周期存储管理。 具体来说,可以定义一组策略,允许数据的自动估价和一组存储层之间的数据迁移。 在部署策略集之前,可以对其进行评估,以确定其对成本,性能和数据位置的影响。 基于数据特征和访问模式,可以提供一组预测数据随时间推移的策略建议,并提供改进的迁移策略,用于随着数据值的变化在一组存储层之间移动数据。

    Data lifecycle management within a cloud computing environment
    2.
    发明授权
    Data lifecycle management within a cloud computing environment 有权
    云计算环境中的数据生命周期管理

    公开(公告)号:US08918439B2

    公开(公告)日:2014-12-23

    申请号:US12817245

    申请日:2010-06-17

    CPC分类号: G06F17/30082

    摘要: Embodiments of the present invention provide lifecycle storage management for data within a Cloud computing environment. Specifically, a set of policies can be defined that allow for automatic valuation of the data and migration of the data between a set of storage tiers. Before a policy set is deployed, it can be assessed to determine effects it will have on cost, performance, and data location. Based on data characteristics and access patterns, a set of policy recommendations can be provided that predict the value of the data over time, and offer an improved migration strategy for moving the data between the set of storage tiers as the value of the data changes.

    摘要翻译: 本发明的实施例为云计算环境中的数据提供生命周期存储管理。 具体来说,可以定义一组策略,允许数据的自动估价和一组存储层之间的数据迁移。 在部署策略集之前,可以对其进行评估,以确定其对成本,性能和数据位置的影响。 基于数据特征和访问模式,可以提供一组预测数据随时间推移的策略建议,并提供改进的迁移策略,用于随着数据值的变化在一组存储层之间移动数据。

    Intelligent network storage planning within a clustered computing environment
    3.
    发明授权
    Intelligent network storage planning within a clustered computing environment 有权
    集群计算环境中的智能网络存储规划

    公开(公告)号:US09106675B2

    公开(公告)日:2015-08-11

    申请号:US12817238

    申请日:2010-06-17

    摘要: Embodiments of the present invention provide an integrated host and subsystem port selection methodology that uses performance measurements combined with information about active data paths. This technique also helps in resilient fabric planning by selecting ports from redundant fabrics. In a typical embodiment, host port to storage port pairs that create a path between a host and a storage device will be identified. From these pairs, a set of host port to storage port candidates for communicate data from the host to the storage device will be identified based on a set of resiliency constraints. Then, a specific host port to storage port pair will be selected from the set based on a lowest joint workload measurement. A path will then be created between the specific host port and storage port, and data will be communicated from the host to the storage device via the path.

    摘要翻译: 本发明的实施例提供了一种集成的主机和子系统端口选择方法,其使用结合有关活动数据路径的信息的性能测量。 这种技术还通过从冗余结构中选择端口来帮助弹性布局规划。 在典型的实施例中,将识别在主机和存储设备之间创建路径的主机端口到存储端口对。 从这些对中,将基于一组弹性约束来识别从主机到存储设备的用于传送数据的存储端口候选的一组主机端口。 然后,将根据最低联合工作负载测量从集合中选择特定的主机端口到存储端口对。 然后将在特定主机端口和存储端口之间创建路径,并且数据将通过路径从主机传送到存储设备。

    INTELLIGENT NETWORK STORAGE PLANNING WITHIN A CLUSTERED COMPUTING ENVIRONMENT
    4.
    发明申请
    INTELLIGENT NETWORK STORAGE PLANNING WITHIN A CLUSTERED COMPUTING ENVIRONMENT 有权
    集群计算环境中的智能网络存储规划

    公开(公告)号:US20110314164A1

    公开(公告)日:2011-12-22

    申请号:US12817238

    申请日:2010-06-17

    IPC分类号: G06F15/16

    摘要: Embodiments of the present invention provide an integrated host and subsystem port selection methodology that uses performance measurements combined with information about active data paths. This technique also helps in resilient fabric planning by selecting ports from redundant fabrics. In a typical embodiment, host port to storage port pairs that create a path between a host and a storage device will be identified. From these pairs, a set of host port to storage port candidates for communicate data from the host to the storage device will be identified based on a set of resiliency constraints. Then, a specific host port to storage port pair will be selected from the set based on a lowest joint workload measurement. A path will then be created between the specific host port and storage port, and data will be communicated from the host to the storage device via the path.

    摘要翻译: 本发明的实施例提供了一种集成的主机和子系统端口选择方法,其使用结合有关活动数据路径的信息的性能测量。 这种技术还通过从冗余结构中选择端口来帮助弹性布局规划。 在典型的实施例中,将识别在主机和存储设备之间创建路径的主机端口到存储端口对。 从这些对中,将基于一组弹性约束来识别从主机到存储设备的用于传送数据的存储端口候选的一组主机端口。 然后,将根据最低联合工作负载测量从集合中选择特定的主机端口到存储端口对。 然后将在特定主机端口和存储端口之间创建路径,并且数据将通过路径从主机传送到存储设备。

    OPTIMIZING STORAGE CLOUD ENVIRONMENTS THROUGH ADAPTIVE STATISTICAL MODELING
    6.
    发明申请
    OPTIMIZING STORAGE CLOUD ENVIRONMENTS THROUGH ADAPTIVE STATISTICAL MODELING 有权
    通过自适应统计建模优化存储云环境

    公开(公告)号:US20120116743A1

    公开(公告)日:2012-05-10

    申请号:US12942011

    申请日:2010-11-08

    IPC分类号: G06G7/62

    CPC分类号: G06F17/30557

    摘要: Embodiments of the present invention provide an approach for adapting an information extraction middleware for a clustered computing environment (e.g., a cloud environment) by creating and managing a set of statistical models generated from performance statistics of operating devices within the clustered computing environment. This approach takes into account the required accuracy in modeling, including computation cost of modeling, to pick the best modeling solution at a given point in time. When higher accuracy is desired (e.g., nearing workload saturation), the approach adapts to use an appropriate modeling algorithm. Adapting statistical models to the data characteristics ensures optimal accuracy with minimal computation time and resources for modeling. This approach provides intelligent selective refinement of models using accuracy-based and operating probability-based triggers to optimize the clustered computing environment, i.e., maximize accuracy and minimize computation time.

    摘要翻译: 本发明的实施例提供了一种用于通过创建和管理从群集计算环境内的操作设备的性能统计生成的一组统计模型来适配用于群集计算环境(例如,云环境)的信息提取中间件的方法。 这种方法考虑了所需的建模精度,包括建模的计算成本,以便在给定时间点选择最佳建模解决方案。 当需要更高的精度(例如,接近工作负载饱和)时,该方法适应于使用适当的建模算法。 将统计模型适应数据特征确保最佳精度,最小的计算时间和建模资源。 该方法提供使用基于精度和基于概率的触发器来优化群集计算环境(即,最大化精度和最小化计算时间)的模型的智能选择性细化。

    CALIBRATING CLOUD COMPUTING ENVIRONMENTS
    7.
    发明申请
    CALIBRATING CLOUD COMPUTING ENVIRONMENTS 有权
    校准云计算环境

    公开(公告)号:US20120042061A1

    公开(公告)日:2012-02-16

    申请号:US12855780

    申请日:2010-08-13

    IPC分类号: G06F15/173 G06F9/455

    摘要: In general, embodiments of present invention provide an approach for calibrating a cloud computing environment. Specifically, embodiments of the present invention provide an empirical approach for obtaining end-to-end performance characteristics for workloads in the cloud computing environment (hereinafter the “environment”). In a typical embodiment, different combinations of cloud server(s) and cloud storage unit(s) are determined. Then, a virtual machine is deployed to one or more of the servers within the cloud computing environment. The virtual machine is used to generate a desired workload on a set of servers within the environment. Thereafter, performance measurements for each of the different combinations under the desired workload will be taken. Among other things, the performance measurements indicate a connection quality between the set of servers and the set of storage units, and are used in calibrating the cloud computing environment to determine future workload placement. Along these lines, the performance measurements can be populated into a table or the like, and a dynamic map of a data center having the set of storage units can be generated.

    摘要翻译: 通常,本发明的实施例提供了一种用于校准云计算环境的方法。 具体地,本发明的实施例提供了一种用于获得云计算环境(以下称为“环境”)中的工作负载的端到端性能特征的经验性方法。 在典型的实施例中,确定云服务器和云存储单元的不同组合。 然后,将虚拟机部署到云计算环境中的一个或多个服务器。 虚拟机用于在环境中的一组服务器上生成所需的工作负载。 此后,将采取在所需工作负荷下的每个不同组合的性能测量。 其中,性能测量表明服务器组和存储单元组之间的连接质量,并用于校准云计算环境以确定未来的工作负载布局。 沿着这些行,性能测量可以被填充到表等中,并且可以生成具有该组存储单元的数据中心的动态映射。

    Calibrating cloud computing environments
    8.
    发明授权
    Calibrating cloud computing environments 有权
    校准云计算环境

    公开(公告)号:US09323561B2

    公开(公告)日:2016-04-26

    申请号:US12855780

    申请日:2010-08-13

    摘要: In general, embodiments of present invention provide an approach for calibrating a cloud computing environment. Specifically, embodiments of the present invention provide an empirical approach for obtaining end-to-end performance characteristics for workloads in the cloud computing environment (hereinafter the “environment”). In a typical embodiment, different combinations of cloud server(s) and cloud storage unit(s) are determined. Then, a virtual machine is deployed to one or more of the servers within the cloud computing environment. The virtual machine is used to generate a desired workload on a set of servers within the environment. Thereafter, performance measurements for each of the different combinations under the desired workload will be taken. Among other things, the performance measurements indicate a connection quality between the set of servers and the set of storage units, and are used in calibrating the cloud computing environment to determine future workload placement. Along these lines, the performance measurements can be populated into a table or the like, and a dynamic map of a data center having the set of storage units can be generated.

    摘要翻译: 通常,本发明的实施例提供了一种用于校准云计算环境的方法。 具体地,本发明的实施例提供了一种用于获得云计算环境(以下称为“环境”)中的工作负载的端到端性能特征的经验性方法。 在典型的实施例中,确定云服务器和云存储单元的不同组合。 然后,将虚拟机部署到云计算环境中的一个或多个服务器。 虚拟机用于在环境中的一组服务器上生成所需的工作负载。 此后,将采取在所需工作负荷下的每个不同组合的性能测量。 其中,性能测量表明服务器组和存储单元组之间的连接质量,并用于校准云计算环境以确定未来的工作负载布局。 沿着这些行,性能测量可以被填充到表等中,并且可以生成具有该组存储单元的数据中心的动态映射。

    AUTOMATED STORAGE PROVISIONING WITHIN A CLUSTERED COMPUTING ENVIRONMENT
    9.
    发明申请
    AUTOMATED STORAGE PROVISIONING WITHIN A CLUSTERED COMPUTING ENVIRONMENT 有权
    在集群计算环境中自动存储提供

    公开(公告)号:US20120110260A1

    公开(公告)日:2012-05-03

    申请号:US12915153

    申请日:2010-10-29

    IPC分类号: G06F12/00

    摘要: Embodiments of the present invention provide an approach for automatic storage planning and provisioning within a clustered computing environment (e.g., a cloud computing environment). Specifically, embodiments of the present invention will receive planning input for a set of storage area network volume controllers (SVCs) within the clustered computing environment, the planning input indicating a potential load on the SVCs and its associated components. Along these lines, analytical models (e.g., from vendors) can be also used that allow for a load to be accurately estimated on the storage components. Regardless, configuration data for a set of storage components (i.e., the set of SVCs, a set of managed disk (Mdisk) groups associated with the set of SVCs, and a set of backend storage systems) will also be collected. Based on this configuration data, the set of storage components will be filtered to identify candidate storage components capable of addressing the potential load. Then, performance data for the candidate storage components will be analyzed to identify an SVC and an Mdisk group to address the potential load. This allows for storage provisioning planning to be automated in a highly accurate fashion.

    摘要翻译: 本发明的实施例提供了一种用于集群计算环境(例如,云计算环境)内的自动存储规划和供应的方法。 具体地,本发明的实施例将接收针对集群计算环境内的一组存储区域网络卷控制器(SVC)的规划输入,规划输入指示SVC及其相关组件上的潜在负载。 沿着这些线路,还可以使用分析模型(例如,来自供应商),允许在存储组件上准确地估计负载。 无论如何,还将收集一组存储组件(即,一组SVC,与该组SVC相关联的一组受管理磁盘(Mdisk)组)和一组后端存储系统的配置数据。 基于该配置数据,将对该组存储组件进行滤波以识别能够寻址潜在负载的候选存储组件。 然后,将分析候选存储组件的性能数据,以识别SVC和Mdisk组以解决潜在负载。 这使得存储配置计划能够以高度精确的方式自动化。

    INTELLIGENT STORAGE PROVISIONING WITHIN A CLUSTERED COMPUTING ENVIRONMENT
    10.
    发明申请
    INTELLIGENT STORAGE PROVISIONING WITHIN A CLUSTERED COMPUTING ENVIRONMENT 有权
    在集群计算环境中的智能存储提供

    公开(公告)号:US20120011316A1

    公开(公告)日:2012-01-12

    申请号:US12831455

    申请日:2010-07-07

    IPC分类号: G06F12/02

    摘要: Embodiments of the present invention provide an approach for intelligent storage planning and planning within a clustered computing environment (e.g., a cloud computing environment). Specifically, embodiments of the present invention will first determine/identify a set of storage area network volume controllers (SVCs) that is accessible from a host that has submitted a request for access to storage. Thereafter, a set of managed disk (mdisk) groups (i.e., corresponding to the set of SVCs) that are candidates for satisfying the request will be determined. This set of mdisk groups will then be filtered based on available space therein, a set of user/requester preferences, and optionally, a set of performance characteristics. Then, a particular mdisk group will be selected from the set of mdisk groups based on the filtering.

    摘要翻译: 本发明的实施例提供了一种用于集群计算环境(例如,云计算环境)内的智能存储规划和规划的方法。 具体地,本发明的实施例将首先确定/识别可从已经提交了访问存储请求的主机可访问的一组存储区域网络卷控制器(SVC)。 此后,将确定作为满足该请求的候选的一组被管理盘(mdisk)组(即,对应于一组SVC)。 然后,这组mdisk组将根据其中的可用空间,一组用户/请求者首选项以及可选的一组性能特征进行过滤。 然后,将根据过滤从一组mdisk组中选择一个特定的mdisk组。