Abstract:
Methods and systems for continuously bagging pellets formed from a tacky and/or polymer containing formulation include improved drying systems and techniques. The methods and systems may include directing a flow of air to help contain moisture within a dryer, transport pellets out of the dryer, and/or dry pellets as they move away from the dryer. The methods and systems may include conditioning (e.g., drying, coating, classifying) the pellets using a conditioning unit prior to bagging the pellets.
Abstract:
A tumbler may be used as defluidizer, dryer, coater, classifier, or dynamic filter. The tumbler includes a rotatable drum that receives a solid/fluid slurry through an inlet chute. As the slurry travels through the drum, fluid exits the drum through a plurality of apertures in screens attached to the sides of the drum, while the solids continue along the drum's length until they reach one or more openings and exit the drum into an outlet chute. The outlet chute includes ridges that wrap around rings extending from the openings of the drum to prevent solids from escaping the outlet chute. To further dry the solids before they exit the drum, an air tube at least partially disposed within the drum is configured to introduce a flow of air into the drum.
Abstract:
A tumbler may be used as defluidizer, dryer, coater, classifier, or dynamic filter. The tumbler includes a housing for rotatably supporting a removable screened drum on a plurality of rollers. The drum receives a solid/fluid slurry through an inlet chute. As the slurry travels through the drum, fluid exits the drum through a plurality of apertures in screens attached to the sides of the drum, while the solids continue along the drum's length until they reach one or more openings and exit the drum into an outlet chute. The outlet chute includes ridges that wrap around rings extending from the openings of the drum to prevent solids from escaping the outlet chute. To further dry the solids before they exit the drum, an air tube disposed within the drum is configured to direct air through the screens to an air blower intake positioned outside of the drum.
Abstract:
A bagging film includes two resins blended with a modifying agent. The first resin, making up about 60%-85% of the formulation, is a copolymer, polymer, elastomer, or combination thereof. The second resin, making up about 14%-39% of the formulation, is a different copolymer, polymer, elastomer, or combination thereof that is physically softer than the first resin. The modifying agent, making up about 0.25%-3.5% of the formulation, is compounded with the resin formulation such that the modifying agent creates a lubricant between the successive layers of the film.
Abstract:
A tumbler may be used as defluidizer, dryer, coater, classifier, or dynamic filter. The tumbler includes a rotatable drum that receives a solid/fluid slurry through an inlet chute. As the slurry travels through the drum, fluid exits the drum through a plurality of apertures in screens attached to the sides of the drum, while the solids continue along the drum's length until they reach one or more openings and exit the drum into an outlet chute. The outlet chute includes ridges that wrap around rings extending from the openings of the drum to prevent solids from escaping the outlet chute. To further dry the solids before they exit the drum, an air tube at least partially disposed within the drum is configured to introduce a flow of air into the drum.
Abstract:
A bagging film includes two resins blended with a modifying agent. The first resin, making up about 60%-85% of the formulation, is a copolymer, polymer, elastomer, or combination thereof. The second resin, making up about 14%-39% of the formulation, is a different copolymer, polymer, elastomer, or combination thereof that is physically softer than the first resin. The modifying agent, making up about 0.25%-3.5% of the formulation, is compounded with the resin formulation such that the modifying agent creates a lubricant between the successive layers of the film.
Abstract:
The various embodiments of the present invention are directed to improved processes and systems for continuously bagging materials. In particular, the improved processes and systems can be used to bag tacky materials with improved throughput. The systems generally include at least one of a feeding section, mixing section, pelletizing section, transport piping, agglomerate catcher, defluidizing section, drying section, pellet diverter valve, and/or bagging assembly.
Abstract:
A tumbler may be used as defluidizer, dryer, coater, classifier, or dynamic filter. The tumbler includes a rotatable drum that receives a solid/fluid slurry through an inlet chute. As the slurry travels through the drum, fluid exits the drum through a plurality of apertures in screens attached to the sides of the drum, while the solids continue along the drum's length until they reach one or more openings and exit the drum into an outlet chute. The outlet chute includes ridges that wrap around rings extending from the openings of the drum to prevent solids from escaping the outlet chute. To further dry the solids before they exit the drum, an air tube at least partially disposed within the drum is configured to introduce a flow of air into the drum.
Abstract:
Methods and systems for continuously bagging pellets formed from a tacky and/or polymer containing formulation include improved drying systems and techniques. The methods and systems may include directing a flow of air to help contain moisture within a dryer, transport pellets out of the dryer, and/or dry pellets as they move away from the dryer. The methods and systems may include conditioning (e.g., drying, coating, classifying) the pellets using a conditioning unit prior to bagging the pellets.
Abstract:
A tumbler may be used as defluidizer, dryer, coater, classifier, or dynamic filter. The tumbler includes a rotatable drum that receives a solid/fluid slurry through an inlet chute. As the slurry travels through the drum, fluid exits the drum through a plurality of apertures in screens attached to the sides of the drum, while the solids continue along the drum's length until they reach one or more openings and exit the drum into an outlet chute. The outlet chute includes ridges that wrap around rings extending from the openings of the drum to prevent solids from escaping the outlet chute. To further dry the solids before they exit the drum, an air tube at least partially disposed within the drum is configured to introduce a flow of air into the drum.