摘要:
Caliper measurements made during rotation of a bottomhole assembly are processed to estimate the location of the BHA, and size and shape of the borehole. A piecewise elliptical fitting procedure may be used. These estimates may be used to correct measurements made by a standoff-sensitive formation evaluation sensor such as a neutron porosity tool.
摘要:
Caliper measurements made during rotation of a bottomhole assembly are processed to estimate the location of the BHA, and size and shape of the borehole. A piecewise elliptical fitting procedure may be used. These estimates may be used to correct measurements made by a standoff-sensitive formation evaluation sensor such as a neutron porosity tool. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
摘要:
Harmonics and subharmonics of acoustic measurements made during rotation of a sensor on a downhole are processed to estimate the location of the imager, and size and shape of the borehole. A piecewise elliptical fitting procedure may be used. These estimates may be used to correct measurements made by a standoff-sensitive formation evaluation sensor such as a neutron porosity tool.
摘要:
Harmonics and subharmonics of acoustic measurements made during rotation of a sensor on a downhole are processed to estimate the location of the imager, and size and shape of the borehole. A piecewise elliptical fitting procedure may be used. These estimates may be used to correct measurements made by a standoff-sensitive formation evaluation sensor such as a neutron porosity tool.
摘要:
The present invention provides a method and apparatus for logging an earth formation and acquiring subsurface information wherein a logging tool is conveyed in borehole to obtain parameters of interest. The parameters of interest obtained may be density, acoustic, magnetic or electrical values as known in the art. The parameters of interest may be transmitted to the surface at a plurality of resolutions using a multi-resolution image compression method. Parameters of interest are formed into a plurality of Cost Functions from which Regions of Interest are determined to resolve characteristics of the Features of interest within the Regions. Feature characteristics may be determined to obtain time or depth positions of bed boundaries and borehole Dip Angle relative to subsurface structures, as well borehole and subsurface structure orientation. Characteristics of the Features include time, depth, and geometries of the subsurface such as structural dip, thickness, and lithologies.
摘要:
The present invention provides a method and apparatus for logging an earth formation and acquiring subsurface information wherein a logging tool is conveyed in borehole to obtain parameters of interest. The parameters of interest obtained may be density, acoustic, magnetic or electrical values as known in the art. The parameters of interest may be transmitted to the surface at a plurality of resolutions using a multi-resolution image compression method. Parameters of interest are formed into a plurality of Cost Functions from which Regions of Interest are determined to resolve characteristics of the Features of interest within the Regions. Feature characteristics may be determined to obtain time or depth positions of bed boundaries and borehole Dip Angle relative to subsurface structures, as well borehole and subsurface structure orientation. Characteristics of the Features include time, depth, and geometries of the subsurface such as structural dip, thickness, and lithologies.
摘要:
A logging-while-drilling density sensor includes a gamma ray source and at least two NaI detectors spaced apart from the source for determining measurements indicative of the formation density. An analytic function based on a heuristic model is used to predict the measured response as a function of offset, mud density and formation density. The model may be used to provide a caliper measurement where acoustic caliper data are unreliable.
摘要:
Caliper measurements made during rotation of an imager on a logging string are processed to estimate the location of the imager, and size and shape of the borehole. A piecewise elliptical fitting procedure may be used. These estimates may be used to correct measurements made by a standoff-sensitive formation evaluation sensor such as a neutron porosity tool. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
摘要:
Caliper measurements made during rotation of an imager on a logging string are processed to estimate the location of the imager, and size and shape of the borehole. A piecewise elliptical fitting procedure may be used. These estimates may be used to correct measurements made by a standoff-sensitive formation evaluation sensor such as a neutron porosity tool. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
摘要:
A logging-while-drilling density sensor includes a gamma ray source and at least two NaI detectors spaced apart from the source for determining measurements indicative of the formation density. An analytic function based on a heuristic model is used to predict the measured response as a function of offset, mud density and formation density. The model may be used to provide a caliper measurement where acoustic caliper data are unreliable. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understand that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).