Abstract:
A through casing formation evaluation tool string 1000, 2000, 3000 including a conveyance string 100, a sonic array tool 200, a pulsed neutron tool 400 and one or more downhole memory modules 160, 540, 550. A method of through casing formation evaluation and casing and cementing integrity evaluation includes lowering a tool string into a cased wellbore; concurrently collecting data with the sonic array tool and pulsed neutron tool and transmitting at least a portion of the collected data via a conveyance string to a CPU located at the surface of the earth; storing a portion of the collected data in a memory module disposed in the tool string; removing the tool string from the wellbore; processing the collected data in the CPU to obtain selected rock property data about the one or more of the geologic formations and/or cement integrity.
Abstract:
Methods and systems are provided for evaluating petrophysical properties of subterranean formations and comprehensively evaluating hydrate presence through a combination of computer-implemented log modeling and analysis. Certain embodiments include the steps of running a number of logging tools in a wellbore to obtain a variety of wellbore data and logs, and evaluating and modeling the log data to ascertain various petrophysical properties. Examples of suitable logging techniques that may be used in combination with the present invention include, but are not limited to, sonic logs, electrical resistivity logs, gamma ray logs, neutron porosity logs, density logs, NRM logs, or any combination or subset thereof.
Abstract:
The invention relates generally to the field of oil and gas exploration and specifically to the use of well logs for exploration. This invention is directed to a method for estimating data that would have been collected in a region of a well log where there is a gap. This method uses identified elements in one data set to identify elements in another data set with data values indicative of the same geological characteristic as those in the first data set.
Abstract:
The present disclosure provides systems utilizing fiber optics for monitoring downhole parameters and the operation and conditions of downhole tools and controlling injection operations based on measurements in an injection well and/or a production well.
Abstract:
The present invention provides method for detecting the possible presence of surfaces layers of diagenetic origin by establishing divergence between well signatures such as logs, particularly for use in predominantly carbonate reservoirs.
Abstract:
A method for includes obtaining a well log comprising a sequence of measurements of a wellbore in a field, and generating change points in the well log based on the sequence of measurements. Each of the change points corresponds to a depth along the wellbore where a probability distribution of the well log changes. The method further includes generating a statistic for each of multiple intervals in the well log, where the intervals are defined by the plurality of change points, categorizing the intervals based on the statistic for each of the intervals to generate categorized intervals, and performing the operation based on the categorized intervals.
Abstract:
A fiber optic distributed sensing system for installation within a wellbore is provided. The system includes a first set of downhole sensors having one or more nuclear sensors with nuclear field sensitivity. The system additionally includes, a second set of downhole sensors having one or more ElectroMagnetic (EM) sensors with electromagnetic field sensitivity. The fiber optic distributed sensing system also includes a processor system configured to receive data measurements from the first and second sets of sensors and configured to conjointly process the data measurements into representations of physical attributes of the wellbore.
Abstract:
A through casing formation evaluation tool string 1000, 2000, 3000 including a conveyance string 100, a sonic array tool 200, a pulsed neutron tool 400 and one or more downhole memory modules 160, 540, 550. A method of through casing formation evaluation and casing and cementing integrity evaluation includes lowering a tool string into a cased wellbore; concurrently collecting data with the sonic array tool and pulsed neutron tool and transmitting at least a portion of the collected data via a conveyance string to a CPU located at the surface of the earth; storing a portion of the collected data in a memory module disposed in the tool string; removing the tool string from the wellbore; processing the collected data in the CPU to obtain selected rock property data about the one or more of the geologic formations and/or cement integrity.
Abstract:
A through casing formation evaluation tool string 1000, 2000, 3000 including a conveyance string 100, a sonic array tool 200, a pulsed neutron tool 400 and one or more downhole memory modules 160, 540, 550. A method of through casing formation evaluation and casing and cementing integrity evaluation includes lowering a tool string into a cased wellbore; concurrently collecting data with the sonic array tool and pulsed neutron tool and transmitting at least a portion of the collected data via a conveyance string to a CPU located at the surface of the earth; storing a portion of the collected data in a memory module disposed in the tool string; removing the tool string from the wellbore; processing the collected data in the CPU to obtain selected rock property data about the one or more of the geologic formations and/or cement integrity.
Abstract:
A method of transmitting borehole image data from a borehole location to a remote location includes obtaining a set of image data describing formation surrounding a borehole using a logging tool at a selected depth or range of depths in the borehole, extracting one or more image features from the set of image data downhole, and transmitting a representation of the extracted image features to the surface.