摘要:
A method and system for inducing augmented levels of heat dissipation by exploiting quiescent IC leakage currents to control the temperature in high power devices. A heat control and temperature monitoring system (HCTMS) utilizes a thermal sensor to sense the junction temperature of a component, which becomes self-heated due to the quiescent leakage current inherent to the component upon the application of power to the component. By increasing the voltage level of the power source, this quiescent self-heating property is augmented, which serves to accelerate the preheating of the device, until the temperature rises above the minimum specified operating temperature of the component. The system is then reliably initialized by applying full system power and triggering a defined initialization sequence/procedure. Once the component is operational, the component's temperature is maintained above the minimum operating threshold via continued self-heating, continued augmentation of the applied DC voltage, or both, as is required.
摘要:
A method and system for utilizing the heat dissipated by quiescent IC leakage currents to control the start-up temperature of components. A temperature control sub-system utilizes a thermal sensor to sense the junction temperature of the component. When the temperature is below an operating threshold, the control sub-system applies power to the component, and the component is self-heated due to the quiescent leakage current inherent to the component. This quiescent self-heating property serves as a source of pre-heat to elevate the temperature of the component, until the temperature, as indicated by the thermal sensor, rises above the minimum specified operating temperature of the component. The system may then be reliably initialized by applying full system power, and triggering a hardware reset or defined initialization sequence/procedure. Once the component(s) is operational, self-heating continues to maintain the component's temperature above the minimum operating threshold.
摘要:
A method and system for inducing augmented levels of heat dissipation by exploiting quiescent IC leakage currents to control the temperature in high power devices. A heat control and temperature monitoring system (HCTMS) utilizes a thermal sensor to sense the junction temperature of a component, which becomes self-heated due to the quiescent leakage current inherent to the component upon the application of power to the component. By increasing the voltage level of the power source, this quiescent self-heating property is augmented, which serves to accelerate the preheating of the device, until the temperature rises above the minimum specified operating temperature of the component. The system is then reliably initialized by applying full system power and triggering a defined initialization sequence/procedure. Once the component is operational, the component's temperature is maintained above the minimum operating threshold via continued self-heating, continued augmentation of the applied DC voltage, or both, as is required.
摘要:
A method and system for utilizing the heat dissipated by quiescent IC leakage currents to control the start-up temperature of components. A temperature control sub-system utilizes a thermal sensor to sense the junction temperature of the component. When the temperature is below an operating threshold, the control sub-system applies power to the component, and the component is self-heated due to the quiescent leakage current inherent to the component. This quiescent self-heating property serves as a source of pre-heat to elevate the temperature of the component, until the temperature, as indicated by the thermal sensor, rises above the minimum specified operating temperature of the component. The system may then be reliably initialized by applying full system power, and triggering a hardware reset or defined initialization sequence/procedure. Once the component(s) is operational, self-heating continues to maintain the component's temperature above the minimum operating threshold.