摘要:
A frequency synthesizer that utilizes locked loop circuitry, for example delay locked loop and/or phase locked loop circuits is provided with a means for minimizing static phase/delay errors. An auto-tuning circuit and technique provide a measurement of static phase error by integrating the static phase error in the DLL/PLL circuit. A correction value is determined and applied as a current at the charge pump or as a time/phase offset at the phase detector to minimize static phase error. During normal operation the DLL/PLL is operated with the correction value resulting in substantially reduced spur levels and/or improved settling time.
摘要:
A frequency synthesizer that utilizes locked loop circuitry, for example delay locked loop and/or phase locked loop circuits is provided with a means for minimizing static phase/delay errors. An auto-tuning circuit and technique provide a measurement of static phase error by integrating the static phase error in the DLL/PLL circuit. A correction value is determined and applied as a current at the charge pump or as a time/phase offset at the phase detector to minimize static phase error. During normal operation the DLL/PLL is operated with the correction value resulting in substantially reduced spur levels and/or improved settling time.
摘要:
A synthesizer comprises a first processing unit that receives digital information relating to a required final frequency of the synthesizer and determines a primary frequency value and a corresponding frequency multiplier mode. A primary synthesizer receives the primary frequency value and an external reference frequency signal to generate a signal of the primary frequency. The synthesizer further comprises a second processing unit that receives the primary frequency value, determines a pre-charge voltage value corresponding to the primary frequency value, and transmits the pre-charge voltage value to a delay locked loop in response to a change in the primary frequency value. The delay locked loop receives the signal of primary frequency and the pre-charge value. The DLL is pre-charged to the pre-charge voltage value for a predetermined time, by opening and closing the delay locked loop to obtain fast locking of the synthesizer.
摘要:
A method and system for managing Digital to Time Conversion (DTC) is provided. The method comprises receiving a first Radio Frequency (RF) signal and a second RF signal. The second RF signal is a phase-shifted first RF signal. The method further comprises converting the first RF signal to a first Intermediate Frequency (IF) signal and the second RF signal to a second IF signal. Further, a time delay between the first IF signal and the second IF signal is estimated based on a time difference measurement technique. The second RF signal is processed based on the estimated time delay to compensate for a delay error associated with the second RF signal.
摘要:
A method (1100, 1200) of generating a composite mitigation signal (216, 902, 1002) is presented. The composite mitigation signal includes an odd integer (N) of transitions (310, 312) between a first amplitude and a second amplitude of the composite mitigation signal. Successive sets of the transition bursts are separated by a desired phase delay or time delay (330), or such separations are defined by a base signal (416) having a frequency equal to a fundamental frequency of the composite mitigation signal. The composite signal generators (222, 900, 1000) that generate the composite mitigation signal are also presented.
摘要:
A method and system for managing Digital to Time Conversion (DTC) is provided. The method comprises receiving a first Radio Frequency (RF) signal and a second RF signal. The second RF signal is a phase-shifted first RF signal. The method further comprises converting the first RF signal to a first Intermediate Frequency (IF) signal and the second RF signal to a second IF signal. Further, a time delay between the first IF signal and the second IF signal is estimated based on a time difference measurement technique. The second RF signal is processed based on the estimated time delay to compensate for a delay error associated with the second RF signal.