Abstract:
A hydraulic damper for an electrical switching apparatus includes a damper enclosure including an inner wall. Also included is a chamber defined by the inner wall, the chamber having a first end, a second end. Further included is a tapered portion of the chamber extending from a tapered portion initial end to a tapered portion terminal end, the tapered portion angled inwardly in a direction from the first end toward the second end of the chamber. Yet further included is a press rod at least partially disposed within the chamber. Also included is a piston having a piston outer surface and disposed within the chamber and having an initial position adjustable in a longitudinal direction of the chamber. Further included is a gap defined by the piston outer surface and the inner wall, wherein adjustment of the piston in the longitudinal direction adjusts the gap.
Abstract:
A switchgear enclosure is provided. The switchgear enclosure includes a plurality of switchgear panels and a plurality of ducts extending through the switchgear panels. Each switchgear panel includes an exterior housing, a busbar compartment defined within the exterior housing, and an exhaust system. The busbar compartment surrounds a busbar extending through the switchgear panel. The exhaust system includes a vent path structure configured within the exterior housing to at least partially surround the busbar compartment, a first channel defined between the vent path structure and the exterior housing, and a first vent opening formed on the vent path structure. The first vent opening directs arc gases within said busbar compartment to the first channel. The ducts are in fluid communication with the first channels of the switchgear panels to distribute arc gases between the first channels.
Abstract:
A hydraulic damper for an electrical switching apparatus includes a damper enclosure including an inner wall. Also included is a chamber defined by the inner wall, the chamber having a first end, a second end. Further included is a tapered portion of the chamber extending from a tapered portion initial end to a tapered portion terminal end, the tapered portion angled inwardly in a direction from the first end toward the second end of the chamber. Yet further included is a press rod at least partially disposed within the chamber. Also included is a piston having a piston outer surface and disposed within the chamber and having an initial position adjustable in a longitudinal direction of the chamber. Further included is a gap defined by the piston outer surface and the inner wall, wherein adjustment of the piston in the longitudinal direction adjusts the gap.
Abstract:
A spout for a connection between a bus bar and a circuit breaker in switchgear includes a housing and a fixed contact. The housing is formed of insulative material and includes a tubular body having an inner cavity and a radial first ventilation opening, a base portion having a first longitudinal opening, and a fixed contact receiving portion having a second longitudinal opening. The fixed contact is formed of a conductive material, has an outer contact surface exposed through the second longitudinal opening, and forms a portion of an outer surface of the spout. A switchgear includes a wall dividing a circuit breaker compartment from a bus bar compartment, and the base portion of the spout is securable to the wall. A method of increasing heat dissipation within switchgear using the spout includes securing a bus bar to the outer contact surface, and dissipating heat through the radial ventilation opening.
Abstract:
An electrical switching apparatus including a housing, a circuit interrupter mechanism movably disposed in the housing, and a damper assembly. The damper assembly includes a bracket that secures the damper assembly to the housing. A damper body is adjustably secured to the bracket. A stopper is coupled to the damper body and arranged to limit relative movement of the circuit interrupter mechanism with respect to the damper assembly. A damper rod extends through an opening in the stopper and has a surface that is arranged to interact with the circuit interrupter mechanism. The damper rod is arranged to damp movement of the circuit interrupter mechanism with respect to the damper body when the circuit interrupter mechanism is in contact with the surface of the damper rod.