Abstract:
A method for reducing a turbine clearance between a plurality of rotor blades of a turbine engine and a shroud of the turbine engine is provided. Said method includes determining, with a flight operation controller, that an airplane is in a first flight condition, wherein the first flight condition is associated with a first turbine clearance and a first engine responsiveness level, determining, with the flight operation controller, that the airplane is in a second flight condition, adjusting an engine responsiveness level from the first engine responsiveness level to a second engine responsiveness level based on determining the airplane is in the second flight condition, and adjusting the turbine clearance from the first turbine clearance to a second turbine clearance based on the engine responsiveness level.
Abstract:
A compressor blade having an airfoil that comprises oppositely-disposed convex and concave surfaces, oppositely-disposed leading and trailing edges defining therebetween a chord length of the airfoil, a forward-most nose of the airfoil located at the leading edge and having a profile, a blade tip, and an erosion-resistant coating. The coating is present on the concave surface near the trailing edge, optionally present on the nose, optionally present on the convex surface, wherein the convex surface is free of the erosion resistant coating within at least 20% of the chord length from the nose. The thickness of the coating on the concave surface, the convex surface, and the nose is such that, if the gas turbine engine is exposed to an erosive environment, deterioration of the concave surface, the convex surface and the leading edge does not form a pronounced cusp at an intersection of the convex surface and leading edge.
Abstract:
A method for reducing a turbine clearance gap between a plurality of rotor blades of a turbine engine and a shroud of the turbine engine is provided. The method includes determining that an airplane is in a first flight condition, and adjusting the turbine clearance gap to a first clearance gap distance associated with the first flight condition. The method also includes determining a demand for a second flight condition, and adjusting an engine responsiveness to a first engine responsiveness for a first predetermined change in a power parameter of the engine. The method further includes reducing the engine responsiveness from the first engine responsiveness level to a second engine responsiveness level for a second predetermined change in the power parameter of the engine, and closing a clearance control valve associated with the shroud during the second predetermined change in the power parameter of the engine.
Abstract:
A method for reducing a turbine clearance gap between a plurality of rotor blades of a turbine engine and a shroud of the turbine engine is provided. The method includes determining that an airplane is in a first flight condition, and adjusting the turbine clearance gap to a first clearance gap distance associated with the first flight condition. The method also includes determining a demand for a second flight condition, and adjusting an engine responsiveness to a first engine responsiveness for a first predetermined change in a power parameter of the engine. The method further includes reducing the engine responsiveness from the first engine responsiveness level to a second engine responsiveness level for a second predetermined change in the power parameter of the engine, and closing a clearance control valve associated with the shroud during the second predetermined change in the power parameter of the engine.