Abstract:
A magnetic field may be applied to a subject having a plurality of tissues, including first and second tissues, causing a net longitudinal magnetization in the tissues. An inversion radio frequency pulse may be generated to invert the longitudinal magnetization from the tissues. Heart-rate timing information associated with a current ECG of the subject may be measured, and an inversion time TI may be dynamically calculated based at least in part on the heart-rate timing information. An excitation radio frequency pulse may then be generated. The generation of the excitation radio frequency pulse may occur a period of time after the generation of the inversion radio frequency pulse, and the period of time may be based on the dynamically calculated inversion time TI. Magnetic resonance imaging data may then be acquired.
Abstract:
Methods and systems to obtain and apply T2 preparatory radiofrequency (RF) pulse sequences for magnetic resonance imaging (MRI) are provided. The iterative methods may employ propagation of the magnetization state of the object being imaged and a comparison with a target magnetization state. The methods disclosed may be used to obtain MRI pulse sequences that may optimize T2 relaxation contrast. The produced RF pulse sequences may be robust to effects from inhomogeneity of the magnetic fields or other environmental or physiological perturbations.
Abstract:
A system and method for cardiac magnetic resonance imaging (MRI) is disclosed that facilitates the phase sensitive reconstruction of inversion recovery magnetization prepared data with minimal scan time penalty by acquiring the phase reference data with low spatial resolution. The technique can be applied for the investigation of myocardial tissue characterization by acquiring 2D and/or 3D late Gadolinium enhancement (LGE) scans after the injection of a Gadolinium contrast agent. Regional areas of contrast accumulation in scarred myocardial tissue appear bright on these T1-weighted images. As disclosed here the proposed technique for phase sensitive inversion recovery acquisition with low resolution phase reference is robust against changes in inversion time, change in T1 due to Gadolinium contrast washout, high signal-to-noise ratio, and low scan time penalty compared to magnitude LGE.
Abstract:
Methods and systems to obtain and apply T2 preparatory radiofrequency (RF) pulse sequences for magnetic resonance imaging (MRI) are provided. The iterative methods may employ propagation of the magnetization state of the object being imaged and a comparison with a target magnetization state. The methods disclosed may be used to obtain MRI pulse sequences that may optimize T2 relaxation contrast. The produced RF pulse sequences may be robust to effects from inhomogeneity of the magnetic fields or other environmental or physiological perturbations.
Abstract:
A system and method for cardiac magnetic resonance imaging (MRI) is disclosed that facilitates the phase sensitive reconstruction of inversion recovery magnetization prepared data with minimal scan time penalty by acquiring the phase reference data with low spatial resolution. The technique can be applied for the investigation of myocardial tissue characterization by acquiring 2D and/or 3D late Gadolinium enhancement (LGE) scans after the injection of a Gadolinium contrast agent. Regional areas of contrast accumulation in scarred myocardial tissue appear bright on these T1-weighted images. As disclosed here the proposed technique for phase sensitive inversion recovery acquisition with low resolution phase reference is robust against changes in inversion time, change in T1 due to Gadolinium contrast washout, high signal-to-noise ratio, and low scan time penalty compared to magnitude LGE.