Abstract:
A ventilation and leak detection system for use in an enclosure includes a ventilation duct extending at least partially through an interior chamber defined in the enclosure. The ventilation duct includes at least one inlet end positioned within a lower portion of the interior chamber and an outlet end. The at least one inlet end includes at least one opening defined therein and sized to enable air and fuel within the enclosure to be drawn into the ventilation duct to ventilate the enclosure. The system further includes a detection unit coupled in flow communication with the ventilation duct proximate to the outlet end for detecting fuel entrained within flow drawn into the ventilation duct.
Abstract:
A ventilation and leak detection system for use in an enclosure includes a ventilation duct extending at least partially through an interior chamber defined in the enclosure. The ventilation duct includes at least one inlet end positioned within a lower portion of the interior chamber and an outlet end. The at least one inlet end includes at least one opening defined therein and sized to enable air and fuel within the enclosure to be drawn into the ventilation duct to ventilate the enclosure. The system further includes a detection unit coupled in flow communication with the ventilation duct proximate to the outlet end for detecting fuel entrained within flow drawn into the ventilation duct.
Abstract:
The present application provides a passive control valve actuator cooling system to provide a flow of cooling air to a control valve actuator used with a gas turbine engine. The passive control valve actuator cooling system may include a turbine enclosure with a negative pressure therein, a radiation shield with a number of radiation shield outlets and the control valve actuator positioned therein, and a cooling air line extending from outside of the turbine enclosure to the radiation shield such that the negative pressure within the turbine enclosure pulls the flow of cooling air into and through the radiation shield so as to cool the control valve actuator.
Abstract:
The present application provides a passive control valve actuator cooling system to provide a flow of cooling air to a control valve actuator used with a gas turbine engine. The passive control valve actuator cooling system may include a turbine enclosure with a negative pressure therein, a radiation shield with a number of radiation shield outlets and the control valve actuator positioned therein, and a cooling air line extending from outside of the turbine enclosure to the radiation shield such that the negative pressure within the turbine enclosure pulls the flow of cooling air into and through the radiation shield so as to cool the control valve actuator.