Abstract:
A system and method for tracking an anatomical structure over time based on Pulsed-Wave (PW) Doppler signals of a Multi-Gated Doppler (MGD) signal is provided. The method may include identifying a gate corresponding with a selected anatomical structure. The method may include analyzing an MGD signal to track the selected anatomical structure over an extended period of time by selecting, at a plurality of sample times during the extended period of time, a PW Doppler signal from a plurality of PW Doppler signals of the MGD signal. Each of the selected PW Doppler corresponds with the selected anatomical structure at the particular sample time. The method may include presenting a continuous PW Doppler signal generated from each of the PW Doppler signals selected at each of the sample times during the extended period of time at a display system.
Abstract:
An ultrasound imaging system and method acquires ultrasound image data from moving an ultrasound probe over a body of a person, automatically divides the ultrasound image data into segments of interest based on where the ultrasound image data was acquired, and displays a panoramic view of the ultrasound image data that includes two or more of the segments of interest with at least one of the segments of interest displayed as a video.
Abstract:
A system and a method of ultrasound imaging includes acquiring ultrasound data, acquiring a quality parameter while acquiring the ultrasound data, determining an acquisition quality level based on the quality parameter, displaying an image generated based on the ultrasound data and displaying an ROI on the ultrasound image, where a color of the ROI represents the acquisition quality level.
Abstract:
An ultrasound device performs an ultrasound scan to acquire a video clip having a plurality of images in a selected zone of a set of lungs. The ultrasound device detects B lines in each of the images of the video clip. The ultrasound device assigns a score to each of the images of the video clip based at least in part on the detected number of B lines. The ultrasound device highlights the detected B lines in each of the images of the video clip. The ultrasound device identifies a representative image from the highlighted images of the video clip in the selected zone. The identification of the representative image is based at least in part on the assigned score of each of the images. The ultrasound device displays the identified representative image.
Abstract:
An ultrasound device performs an ultrasound scan to acquire a video clip having a plurality of images in a selected zone of a set of lungs. The ultrasound device detects B lines in each of the images of the video clip. The ultrasound device assigns a score to each of the images of the video clip based at least in part on the detected number of B lines. The ultrasound device highlights the detected B lines in each of the images of the video clip. The ultrasound device identifies a representative image from the highlighted images of the video clip in the selected zone. The identification of the representative image is based at least in part on the assigned score of each of the images. The ultrasound device displays the identified representative image.
Abstract:
Systems and methods for measuring cardiac output are provided. The systems and methods generate an ultrasound image based on ultrasound imaging data of a patient acquired by an ultrasound probe. The systems and methods automatically designate a region of interest (ROI) within the ultrasound image, and acquire spectral data sets for corresponding candidate Doppler gates within the ROI based on Doppler data acquired by the ultrasound probe. The systems and methods automatically identify a select Doppler gate from the candidate Doppler gates based on a characteristic of the spectral data sets, and calculate a cardiac output of the patient based on the select Doppler gate.
Abstract:
The present invention provides an ultrasound imaging method, comprising: selecting an initial ultrasound image frame; marking a plurality of marking points on the initial ultrasound image frame; tracking updated positions of the marking points in subsequent ultrasound image frames; displaying updated marking points at the updated positions.
Abstract:
Systems and methods for measuring cardiac output are provided. The systems and methods generate an ultrasound image based on ultrasound imaging data of a patient acquired by an ultrasound probe. The systems and methods automatically designate a region of interest (ROI) within the ultrasound image, and acquire spectral data sets for corresponding candidate Doppler gates within the ROI based on Doppler data acquired by the ultrasound probe. The systems and methods automatically identify a select Doppler gate from the candidate Doppler gates based on a characteristic of the spectral data sets, and calculate a cardiac output of the patient based on the select Doppler gate.
Abstract:
An example system includes a probe to generate ultrasound scans; a user interface to receive inputs from and to provide outputs to a user; and a controller to receive selection of an objective value for each of a plurality of lung sectors of a patient and present an objective lung assessment to the user through the user interface.
Abstract:
A user interface and method for identifying related information displayed in an ultrasound system are provided. A medical image display of the ultrasound system includes a first region configured to display a medical image having color coded portions and a second region configured to display non-image data related to the medical image displayed in the first region. The non-image data is color coded to associate the non-image data with the color coded portions of the medical image.