Abstract:
A turbine rotor includes a rotor body and a balancing weight slot defined in an exterior circumference of the body. The balancing weight slot has a first axial width and a first radially outward facing surface at a first radial distance from a rotor axis. The rotor also includes a balancing weight entry port defined in a portion of the exterior circumference of the rotor body and aligned with the balancing weight slot. The balancing weight entry port has a second axial width greater than the first axial width and a second radially outward facing surface at a second radial distance from the axis of the rotor body that is smaller than the first radial distance. A method may include machining the entry port into the rotor with a tool. The method may be applied to a new rotor, or to remove cracks initiating from a previous entry port.
Abstract:
A turbine rotor includes a rotor body and a balancing weight slot defined in an exterior circumference of the body. The balancing weight slot has a first axial width and a first radially outward facing surface at a first radial distance from a rotor axis. The rotor also includes a balancing weight entry port defined in a portion of the exterior circumference of the rotor body, aligned with the balancing weight slot. The balancing weight entry port has a second axial width greater than the first axial width and a second radially outward facing surface at a second radial distance from the axis of the rotor body smaller than the first radial distance. A method may include machining the entry port into the rotor with a tool. The method may be applied to a new rotor, or to remove cracks initiating from a previous entry port.
Abstract:
Shaft assemblies, turbomachines, and methods of servicing a turbomachine are provided. A shaft assembly includes a first shaft having a first rabbet annularly defined therein. The first rabbet includes a first axially extending face and a first radially extending face. A second shaft coupled to the first shaft. The second shaft includes a second rabbet annularly defined therein and positioned opposite the first rabbet. The second rabbet includes a second axially extending face and a second radially extending face. A patch ring is mounted between the first rabbet and the second rabbet. The patch ring includes a main body positioned between and in contact with the first axially extending face and the second axially extending face. A first arm extends radially outward from the main body, and a second arm extends radially inward from the main body.
Abstract:
An automatic vessel access device based on real time volumetric ultrasound is provided. The automatic vessel access device comprises a probe configured to generate a VOI image of a candidate vessel in a real time volume ultrasound scan mode, a control device coupled to the probe, and at least one motor coupled to the control device. The control device comprises at least one processing module configured to determine at least one control parameter based on the VOI image, and a driver module coupled with the at least one processing module and configured to drive the at least one motor to automatically access the candidate vessel according to the at least one control parameter.
Abstract:
An apparatus for detecting catheter(s) in 3D ultrasound images includes a 3D ultrasound image acquiring module and a catheter centerline 3D trajectory generating module. The 3D ultrasound image acquiring module is used for capturing an original 3D ultrasound image. The catheter centerline 3D trajectory generating module is used for detecting and visualizing a catheter in the 3D ultrasound image.
Abstract:
A turbine rotor includes a rotor body and a balancing weight slot defined in an exterior circumference of the body. The balancing weight slot has a first axial width and a first radially outward facing surface at a first radial distance from a rotor axis. The rotor also includes a balancing weight entry port defined in a portion of the exterior circumference of the rotor body and aligned with the balancing weight slot. The balancing weight entry port has a second axial width greater than the first axial width and a second radially outward facing surface at a second radial distance from the axis of the rotor body that is smaller than the first radial distance. A method may include machining the entry port into the rotor with a tool. The method may be applied to a new rotor, or to remove cracks initiating from a previous entry port.
Abstract:
A turbine rotor includes a rotor body and a balancing weight slot defined in an exterior circumference of the body. The balancing weight slot has a first axial width and a first radially outward facing surface at a first radial distance from a rotor axis. Rotor also includes a balancing weight entry port defined in a portion of the exterior circumference of the rotor body, aligned with the balancing weight slot. Balancing weight entry port has a second axial width greater than the first axial width and a second radially outward facing surface at a second radial distance from the axis of the rotor body smaller than the first radial distance. A method may include machining the entry port into the rotor with a tool. The method may be applied to a new rotor, or to remove cracks initiating from a previous entry port.
Abstract:
The present invention provides an ultrasound imaging method, comprising: selecting an initial ultrasound image frame; marking a plurality of marking points on the initial ultrasound image frame; tracking updated positions of the marking points in subsequent ultrasound image frames; displaying updated marking points at the updated positions.
Abstract:
The present invention relates to a method and apparatus for measuring an ultrasonic image. The method comprises: a measuring template loading step: loading a measuring template according to a received instruction; and a measuring template displaying step: displaying a selected measuring template at a designated position on the ultrasonic image.
Abstract:
The present invention relates to a method, apparatus for generating a fused ultrasonic image and an ultrasound machine. The method comprises: acquiring an ultrasonic image of PW mode; acquiring an ultrasonic image of M mode; and superimposing the ultrasonic image of PW mode to a corresponding position of the ultrasonic image of M mode to generate a fused ultrasonic image.