Abstract:
A wind turbine tower includes a door access opening in a down tower area of the tower. A hinged door panel covers the door access opening, with a ventilation opening defined through the door panel. A multi-sided intake structure, such as a box-like structure, is connected to an exterior of the door panel over the first ventilation opening. The intake structure extends transversely from the door panel and includes a top side, a bottom side, and at least two vertical sides extending between the top side and the bottom side. The vertical sides are open to air flow therethrough. The top and bottom sides may also be open to air flow therethrough. Air from multiple directions is drawn into an interior of the wind turbine tower through the intake structure and ventilation opening. A filtering system with first and second stage filters may be incorporated with any of the intake structures.
Abstract:
A wind power generation system includes one or both of a memory or storage device storing one or more processor-executable executable routines, and one or more processors configured to execute the one or more executable routines which, when executed, cause acts to be performed. The acts include receiving weather data, wind turbine system data, or a combination thereof; transforming the weather data, the wind turbine system data, or the combination thereof, into a data subset, wherein the data subset comprises a first time period data; selecting one or more wind power system models from a plurality of models; transforming the one or more wind power system models into one or more trained models at least partially based on the data subset; and executing the one or more trained models to derive a forecast, wherein the forecast comprises a predicted electrical power production for the wind power system.
Abstract:
The present discussion relates to generating power generation forecasts both on-site and remote to a wind farm, or other intermittent power generation asset, so as to increase the reliability of providing a forecast to interested parties, such as regulatory authorities. Forecasts may be separately generated at both the on-site and remote locations and, if both are available, one is selected for transmission to interested parties, such as regulatory authorities. If, due to circumstances, one forecast is unavailable, the other forecast may be used in its place locally and remotely, communications permitting.
Abstract:
A method is provided. The method includes identifying a dispatch interval for dispatching power from a wind farm, determining an observation time interval and a control time interval in the dispatch interval, computing a farm power moving average of the power of the wind farm, computing a grid frequency moving average of a grid frequency, determining a farm power set point based on a predefined wind farm operating model using the farm power moving average and the grid frequency moving average, controlling one or more wind turbines in the wind farm during the control time interval based on the farm power set point to regulate a farm-level dispatch power.
Abstract:
A wind turbine tower includes a door access opening in a down tower area of the tower. A hinged door panel covers the door access opening, with a ventilation opening defined through the door panel. A multi-sided intake structure, such as a box-like structure, is connected to an exterior of the door panel over the first ventilation opening. The intake structure extends transversely from the door panel and includes a top side, a bottom side, and at least two vertical sides extending between the top side and the bottom side. The vertical sides are open to air flow therethrough. The top and bottom sides may also be open to air flow therethrough. Air from multiple directions is drawn into an interior of the wind turbine tower through the intake structure and ventilation opening. A filtering system with first and second stage filters may be incorporated with any of the intake structures.
Abstract:
A method is provided. The method includes identifying a dispatch interval for dispatching power from a wind farm, determining an observation time interval and a control time interval in the dispatch interval, computing a farm power moving average of the power of the wind farm, computing a grid frequency moving average of a grid frequency, determining a farm power set point based on a predefined wind farm operating model using the farm power moving average and the grid frequency moving average, controlling one or more wind turbines in the wind farm during the control time interval based on the farm power set point to regulate a farm-level dispatch power.