Abstract:
An automated in-line feed-through system and method, integrates the ability to control one or more variables during part fabrication with the layup of one or more fiber tows to form a composite part. The system includes an automated layup system configured to receive a feed-through of one or more fiber tows as an input material. The automated in-line feed-through system further includes a controller configured to respond to measurement data obtained by one or more samplings of the input material and/or a plurality of laid up plies that form a laminate. The controller in response to the obtained measurement data provides adjustment of the feed-through of the one or more fiber tows to compensate for a variation in one or more of the weights from a reference weight.
Abstract:
An automated in-line feed-through system and method, integrates the ability to control one or more variables during part fabrication with the layup of one or more fiber tows to form a composite part. The system includes an automated layup system configured to receive a feed-through of one or more fiber tows as an input material. The automated in-line feed-through system further includes a controller configured to respond to measurement data obtained by one or more samplings of the input material and/or a plurality of laid up plies that form a laminate. The controller in response to the obtained measurement data provides adjustment of the feed-through of the one or more fiber tows to compensate for a variation in one or more of the weights from a reference weight.
Abstract:
An apparatus and method for a degassing apparatus with a degassing chamber and a container. The container is located within the degassing chamber and defines a holding chamber with an opening. An insert for being received in the opening. The insert including at least one conduit extending between an inlet and an outlet.