摘要:
The present invention provides gene sets the expression of which is important in the diagnosis and/or prognosis of cancer, in particular of breast cancer.
摘要:
The present disclosure provides gene and gene sets, the expression of which is important in the classification and/or prognosis of cancer, in particular of renal cell carcinoma.
摘要:
The present invention provides algorithm-based molecular assays that involve measurement of expression levels of genes, or their co-expressed genes, from a biological sample obtained from a prostate cancer patient. The genes may be grouped into functional gene subsets for calculating a quantitative score useful to predict a likelihood of a clinical outcome for a prostate cancer patient.
摘要:
The present invention provides algorithm-based molecular assays that involve measurement of expression levels of genes from a biological sample obtained from a kidney cancer patient. The present invention also provides methods of obtaining a quantitative score for a patient with kidney cancer based on measurement of expression levels of genes from a biological sample obtained from a kidney cancer patient. The genes may be grouped into functional gene subsets for calculating the quantitative score and the gene subsets may be weighted according to their contribution to cancer recurrence.
摘要:
The present invention provides algorithm-based molecular assays that involve measurement of expression levels of genes, or their co-expressed genes, from a biological sample obtained from a prostate cancer patient. The genes may be grouped into functional gene subsets for calculating a quantitative score useful to predict a likelihood of a clinical outcome for a prostate cancer patient.
摘要:
The present disclosure provides gene and gene sets, the expression of which is important in the classification and/or prognosis of cancer, in particular of renal cell carcinoma.
摘要:
The present disclosure includes assays that involve measurement of expression levels of prognostic biomarkers, or co-expressed biomarkers, from a biological sample obtained from a prostate cancer patient, and analysis of the measured expression levels to provide information concerning the likely prognosis for the patient, and likelihood that the patient will have a recurrence of prostate cancer, or to classify the tumor by likelihood of clinical outcome or TMPRSS2 fusion status.