摘要:
A carrierless storage system enclosure includes an ejection mechanism to permit installation and removal of data storage devices (e.g., hard disk drives) without tools, carriers, and manual cabling.
摘要:
Methods and apparatus automatically identify certain types of data storage system problems, such as a flawed storage device or an incompatibility between a data storage system and a data storage device or an incompatibility between the storage system and a user computer. The existence of such a problem may be highlighted to a user through an indicator on the storage system and/or through a “dashboard” application being executed by the user computer, and the problem may be automatically corrected by automatically downloading a fix (e.g., new firmware or a “patch”) from a server (e.g., a server managed by the storage device manufacturer, a server managed by the storage system manufacturer and/or a server managed by a third party) and automatically implementing the fix.
摘要:
Methods and apparatus automatically identify certain types of data storage system problems, such as a flawed storage device or an incompatibility between a data storage system and a data storage device or an incompatibility between the storage system and a user computer. The existence of such a problem may be highlighted to a user through an indicator on the storage system and/or through a “dashboard” application being executed by the user computer, and the problem may be automatically corrected by automatically downloading a fix (e.g., new firmware or a “patch”) from a server (e.g., a server managed by the storage device manufacturer, a server managed by the storage system manufacturer and/or a server managed by a third party) and automatically implementing the fix.
摘要:
A carrierless storage system enclosure includes an ejection mechanism to permit installation and removal of data storage devices (e.g., hard disk drives) without tools, carriers, and manual cabling.
摘要:
A dynamically expandable and contractible fault-tolerant storage system employs a virtual hot spare that is created from unused storage capacity across a plurality of storage devices. This unused storage capacity is available if and when a storage device fails for storage of data recovered from the remaining storage device(s). On an ongoing basis, the storage system may determine the amount of unused storage capacity that would be required for the virtual hot spare (e.g., based on the number of storage devices, the capacities of the various storage devices, the amount of data stored, and the manner in which the data is stored) and generate a signal if additional storage capacity is needed for a virtual hot spare.
摘要:
A dynamically upgradeable fault-tolerant storage system permits a storage device to be replaced with a larger storage device. Data stored redundantly across multiple storage devices is reproduced on the replacement device, and the additional storage space on the replacement device is made available for redundantly storing additional data.
摘要:
A filesystem-aware storage system locates and analyzes host filesystem data structures in order to determine storage usage of the host filesystem. To this end, the storage system might locate an operating system partition, parse the operating system partion to locate its data structures, and parse the operating system data structures to locate the host filesystem data structures. The storage system manages data storage based on the storage usage of the host file system. The storage system can use the storage usage information to identify storage areas that are no longer being used by the host filesystem and reclaim those areas for additional data storage capacity. Also, the storage system can identify the types of data stored by the host filesystem and manage data storage based on the data types, such as selecting a storage layout and/or an encoding scheme for the data based on the data type.
摘要:
A filesystem-aware storage system locates and analyzes host filesystem data structures in order to determine storage usage of the host filesystem. To this end, the storage system might locate an operating system partition, parse the operating system partion to locate its data structures, and parse the operating system data structures to locate the host filesystem data structures. The storage system manages data storage based on the storage usage of the host file system. The storage system can use the storage usage information to identify storage areas that are no longer being used by the host filesystem and reclaim those areas for additional data storage capacity. Also, the storage system can identify the types of data stored by the host filesystem and manage data storage based on the data types, such as selecting a storage layout and/or an encoding scheme for the data based on the data type.
摘要:
A hardware-based file system includes multiple linked sub-modules that perform functions ancillary to client data handling. Each sub-module is associated with a metadata cache. A doubly-rooted structure is used to store each file system object at successive checkpoints. Metadata is stored within an object and/or as a separate object. Provisions are made for allocating sparse objects. A delayed write feature is used for writing certain objects into non-volatile storage. Checkpoints can be retained as read-only versions of the file system. Modifications to the file system are accomplished without affecting the contents of retained checkpoints. The file system can be reverted to a retained checkpoint. Multiple file servers can be interconnected as a cluster, and each file server stores requests from another file server. Interconnections between file servers can be dynamically modified. A distributed locking mechanism is used to control access to file system objects stored by the file servers.
摘要:
A hardware-based file system includes multiple linked sub-modules that perform functions ancillary to client data handling. Each sub-module is associated with a metadata cache. A doubly-rooted structure is used to store each file system object at successive checkpoints. Metadata is stored within an object and/or as a separate object. Provisions are made for allocating sparse objects. A delayed write feature is used for writing certain objects into non-volatile storage. Checkpoints can be retained as read-only versions of the file system. Modifications to the file system are accomplished without affecting the contents of retained checkpoints. The file system can be reverted to a retained checkpoint. Multiple file servers can be interconnected as a cluster, and each file server stores requests from another file server. Interconnections between file servers can be dynamically modified. A distributed locking mechanism is used to control access to file system objects stored by the file servers.