摘要:
Physical storage devices are configured as a redundant array of independent disks (RAID). As such, storage space of the physical storage devices is allocated to the RAID, and each physical storage device is part of the RAID. Where a portion of the storage space of the physical storage devices is not allocated to the RAID, this portion of the storage space is configured so that it is usable and is not wasted.
摘要:
Systems and methods for using RAID with ATA mass storage devices can benefit from operating system optimizations for avoiding unaligned write accesses. When the ATA mass storage devices in the RAID array have different physical sector sizes, the largest physical sector size is reported as the physical sector size for the single disk represented by the RAID array. The operating system can optimize accesses that are aligned with all of the physical sector sizes within the RAID array. Additionally, any storage devices that have a first logical sector that does not have an offset of zero, are configured to ignore all logical sectors in the first physical sector. Accesses to the first logical sector are mapped to the second physical sector. A logical sector alignment of zero is then reported to the operating system for the RAID array, enabling the operating system to avoid unaligned writes.
摘要:
A computer storage system is described. A range of volume block numbers (VBNs) is assigned to a volume. A range of storage device block numbers (DBNs) is assigned to each of a plurality of storage devices. A first mapping parameters are created to map a first range of VBN numbers to a first selected range of DBNs using a first portion of a new storage device. A second mapping parameters are created to map a second range of VBN numbers to a second range of DBNs on a second portion of the new storage device.
摘要:
A computer storage system is described. A range of volume block numbers (VBNs) is assigned to a volume. A range of storage device block numbers (DBNs) is assigned to each of a plurality of storage devices. A first mapping parameters are created to map a first range of VBN numbers to a first selected range of DBNs using a first portion of a new storage device. A second mapping parameters are created to map a second range of VBN numbers to a second range of DBNs on a second portion of the new storage device.
摘要:
A storage operating system is configured to assign volume block numbers (VBNs) to a volume. The system has a plurality of disks, and each disk of the plurality of disks is assigned disk block numbers (DBNs). A raidmap is configured to map the VBNs to the DBNs of the plurality of physical disks, the mapping for a particular disk stored in a disk label for the particular disk. The disk label for the particular disk is then written to the particular disk.
摘要:
A method for storing data across a plurality of N storage devices S1 . . . SN, wherein at least certain of the storage devices have a storage capacity CMIN=CJ≦CK . . . ≦CMAX, and CMIN
摘要:
A computer-implemented method replaces a redundant array of independent disks (RAID) array member storage device configured in high density packaging. The high density packaging includes a plurality of field-replaceable units (FRUs). Each FRU has an associated plurality of storage devices. A first spare storage device of a first FRU is captured. The first FRU is dedicated as a plurality of spare storage devices by a RAID controller. A small computer system interface (SCSI) enclosure services (SES) processor (SESP) is initialized to read data from the RAID array member storage device and transfer the data to the first spare storage device. The first spare storage device and the RAID array member storage device are co-resident within a serial attached small computer system interface (SAS) expander local port domain.
摘要:
A dynamically expandable and contractible fault-tolerant storage system employs a virtual hot spare that is created from unused storage capacity across a plurality of storage devices. This unused storage capacity is available if and when a storage device fails for storage of data recovered from the remaining storage device(s). On an ongoing basis, the storage system may determine the amount of unused storage capacity that would be required for the virtual hot spare (e.g., based on the number of storage devices, the capacities of the various storage devices, the amount of data stored, and the manner in which the data is stored) and generate a signal if additional storage capacity is needed for a virtual hot spare.
摘要:
A dynamically expandable and contractible fault-tolerant storage system permits variously sized storage devices. Data is stored redundantly across one or more storage devices if possible. The layout of data across the one or more storage devices is automatically reconfigured as storage devices are added or removed in order to provide an appropriate level of redundancy for the data to the extent possible. A hash-based compression technique may be used to reduce storage consumption. Techniques for freeing unused storage blocks are also disclosed.
摘要:
In an information processing system including a computer device and a storage device storing data used by the computer device, the region in which the data is held is managed in association with a change, over the passage of time, in the performance and availability required of the data holding region. The computer device includes a storage device managing unit for managing the storage device which stores data used by the computer device. The storage device managing unit periodically monitors temporal characteristics information, and moves data, if the storage region having functional characteristics corresponding to the temporal characteristics information is different from the storage region to which the data is currently assigned.