Method for coupling of telecommunication terminals to a radio network termination
    2.
    发明授权
    Method for coupling of telecommunication terminals to a radio network termination 失效
    将电信终端耦合到无线电网络终端的方法

    公开(公告)号:US06188895B1

    公开(公告)日:2001-02-13

    申请号:US09180813

    申请日:1998-11-16

    IPC分类号: H04Q720

    CPC分类号: H04W84/14 H04W12/06 H04W92/02

    摘要: In order to couple further telecommunications terminal end points automatically to a hybrid telecommunications system—in particular an RNT-specific telecommunications system to which a telecommunications terminal end point is connected, an interface structure is in each case created in the telecommunications interfaces between a public telecommunications network and a DECT/GAP-specific RNT system of the hybrid telecommunications system, This interface structure is constructed in such a manner that each telecommunications interface autonomously, for example in accordance with a predetermined calculation algorithm, forms further connection information that is relevant for the telecommunications connection to the other telecommunications appliances, irrespective of the respectively other interface, This is based on first connection information which is stored in the interface and is relevant for the telecommunications connection to one of the telecommunications terminal end points.

    摘要翻译: 为了将另外的电信终端端点自动耦合到混合电信系统 - 特别是连接电信终端终点的RNT特定的电信系统,在每种情况下都会在公共电信之间的电信接口中创建接口结构 网络和混合电信系统的DECT / GAP专用RNT系统。该接口结构被构造成使得每个电信接口自动地,例如根据预定的计算算法,形成与 电信连接到其他电信设备,而不考虑其他接口。这是基于存储在接口中并与电信终端终端之一的电信连接相关的第一连接信息。

    System and method with automatically optimized imaging
    3.
    发明授权
    System and method with automatically optimized imaging 有权
    系统和方法自动优化成像

    公开(公告)号:US07725163B2

    公开(公告)日:2010-05-25

    申请号:US10324416

    申请日:2002-12-19

    IPC分类号: A61B6/00

    摘要: An image system, notably an X-ray system and an ultrasound system, is provided in which images or sequences of images are generated and used to automatically change or optimize the operational behavior of individual image system components. Measurement fields are defined in the images of an image sequence by means of a data processing unit. Information is extracted from the measurement fields in order to adapt the system components. More specifically, in the course of a sequence of images the measurement fields are adapted or shifted in conformity with the motion of objects.

    摘要翻译: 提供了一种图像系统,特别是X射线系统和超声系统,其中生成图像或序列图像并用于自动改变或优化各个图像系统部件的操作行为。 通过数据处理单元在图像序列的图像中定义测量场。 从测量领域提取信息,以适应系统组件。 更具体地,在图像序列的过程中,测量场被适配或偏移以符合物体的运动。

    Primary shaping method for a component comprising a microstructured functional element
    4.
    发明申请
    Primary shaping method for a component comprising a microstructured functional element 失效
    用于包含微结构化功能元件的组分的初始成型方法

    公开(公告)号:US20060162896A1

    公开(公告)日:2006-07-27

    申请号:US11238184

    申请日:2005-09-28

    IPC分类号: B22C9/04

    摘要: The invention relates to a molding method for a component with at least one microstructured functional element, which is configured intentionally with a defined structure, in relief, at a defined point on the surface of the component in order to specifically fulfil a function. The element has a characteristic dimension in the micrometer range in at least one spatial direction. The component is shaped from a substantially metallic material using a mould. The aim of the invention is to simplify and accelerate a primary shaping method of this type, making it more cost-effective and attractive for mass-production and use on a large scale, thus opening new avenues of application. To achieve this, at least one functional element is formed in a negative impression that is configured on the surface of the mould. The invention also relates to a mould, a core, a core box, a model, an original form and a master pattern for carrying out said primary shaping method.

    摘要翻译: 本发明涉及一种用于具有至少一个微结构化功能元件的部件的模制方法,其特征在于,在组件表面上的限定点处有意地以限定的结构构造,以特别地实现功能。 该元件在至少一个空间方向上具有微米范围内的特征尺寸。 该部件使用模具从基本金属材料成型。 本发明的目的是简化和加速这种类型的主要成型方法,使其大规模生产和使用更具成本效益和吸引力,从而开辟新的应用途径。 为了实现这一点,至少一个功能元件形成在构造在模具表面上的负压印中。 本发明还涉及用于实施所述初级成型方法的模具,芯,芯盒,模型,原始形式和主图案。

    Ultrasound system and ultrasound diagnostic apparatus for imaging scatterers in a medium
    5.
    发明授权
    Ultrasound system and ultrasound diagnostic apparatus for imaging scatterers in a medium 失效
    超声波系统和超声诊断装置,用于在介质中成像散射体

    公开(公告)号:US06790182B2

    公开(公告)日:2004-09-14

    申请号:US09945859

    申请日:2001-09-04

    申请人: Kai Eck Georg Schmitz

    发明人: Kai Eck Georg Schmitz

    IPC分类号: A61B802

    摘要: An ultrasound imaging system for imaging ultrasound scatterers, comprising a probe (208) for transmitting ultrasound waves and detecting ultrasound echoes reflected by said ultrasound scatterers, wherein said probe comprises a first group of transducer elements, labeled transmitting group (T), to transmit ultrasound waves, and a distinct second group of transducer elements, labeled receiving group (R), to detect ultrasound echoes reflected by said ultrasound scatterers. The system also comprises a processing system (202) comprising transmission and reception means, coupled to said probe (208), for providing coded signal to said transmitting group (T) and receiving signals from said receiving group (R) respectively; transmission beam-forming means (103) for focussing the ultrasound waves on a focus line, reception beam-forming means (105) for forming beam-summed received signals from signals received from the focus line and processing means for processing said beam-summed received signals to form decoded signals so as; and means for displaying an image (109) that is a function of said decoded signals.

    摘要翻译: 一种用于对超声波散射体进行成像的超声成像系统,包括用于传输超声波的探针(208)和检测由所述超声波散射体反射的超声回波,其中所述探针包括标记发射组(T)的第一组换能器元件,以传输超声波 以及标记为接收组(R)的不同的第二组换能器元件,以检测由所述超声波散射体反射的超声回波。 该系统还包括一个处理系统(202),包括耦合到所述探测器(208)的发射和接收装置,用于向所述发射组(T)提供编码信号并分别从所述接收组(R)接收信号; 用于将超声波聚焦在聚焦线上的传输波束形成装置(103),用于根据从聚焦线接收的信号形成波束相加的接收信号的接收波束形成装置(105)和用于处理所述波束相加的接收的处理装置 信号以形成解码信号; 以及用于显示作为所述解码信号的函数的图像(109)的装置。

    Primary shaping method for a component comprising a microstructured functional element
    6.
    发明授权
    Primary shaping method for a component comprising a microstructured functional element 失效
    用于包含微结构化功能元件的组分的初始成型方法

    公开(公告)号:US07681627B2

    公开(公告)日:2010-03-23

    申请号:US11238184

    申请日:2005-09-28

    IPC分类号: B22C9/04 B22C7/02

    摘要: A method is disclosed for molding a component with at least one microstructured functional element, which is configured intentionally with a defined structure, in relief, at a defined point on the surface of the component in order to specifically fulfill a function. The element has a characteristic dimension in the micrometer range in at least one spatial direction. The component is shaped from a substantially metallic material using a mould. At least one functional element is formed in a negative impression that is configured on the surface of the mould.

    摘要翻译: 公开了一种用于模制具有至少一个微结构化功能元件的部件的方法,该元件在元件的表面上的限定点处有意地以限定的结构构造,以便特别地实现功能。 该元件在至少一个空间方向上具有微米范围内的特征尺寸。 该部件使用模具从基本金属材料成型。 至少一个功能元件形成在构造在模具表面上的负压印中。

    Method of and device for position detection in X-ray imaging
    7.
    发明授权
    Method of and device for position detection in X-ray imaging 失效
    X射线成像中位置检测的方法和装置

    公开(公告)号:US6050724A

    公开(公告)日:2000-04-18

    申请号:US14714

    申请日:1998-01-28

    摘要: The invention relates to a method of position detection in X-ray imaging, and to a device for carrying out such a method by means of an X-ray apparatus, a detector device, including at least two detector elements, and an indicator device. The exact association of the X-ray image with the object imaged is very important notably for intraoperative imaging. Exact knowledge of the position and orientation of the components of the X-ray apparatus associated with the imaging system is required for this purpose. However, it is often problematic that the lines of sight of the position measuring system are obscured by attending staff or other apparatus. Therefore, in the device according to the invention the detector device is mounted on the X-ray apparatus and the indicator device is provided so as to be stationary on the object to be examined or stationary relative to the object to be examined. Also described is a method of position detection in X-ray imaging by means of such a device.

    摘要翻译: 本发明涉及一种X射线成像中的位置检测方法以及通过X射线装置,包括至少两个检测器元件的检测器装置以及指示器装置来执行这种方法的装置。 X射线图像与成像对象的精确关联对于术中成像非常重要。 为此,需要对与成像系统相关联的X射线设备的部件的位置和方向的准确了解。 然而,位置测量系统的视线通常由参加人员或其它设备而被遮蔽是常常的问题。 因此,在根据本发明的装置中,检测器装置安装在X射线装置上,并且指示装置被设置成相对于被检查物体静止在被检查物体或静止物上。 还描述了通过这种装置的X射线成像中的位置检测方法。

    Ultrasonic membrane transducer for an ultrasonic diagnostic probe
    8.
    发明授权
    Ultrasonic membrane transducer for an ultrasonic diagnostic probe 失效
    用于超声波诊断探头的超声波换能器

    公开(公告)号:US06784600B2

    公开(公告)日:2004-08-31

    申请号:US10137491

    申请日:2002-05-01

    IPC分类号: H01L41047

    摘要: The invention is directed towards structures for use with micro-formed membrane ultrasonic transducers, and methods for fabricating the structures. In one embodiment, the transducer includes a planar member having a piezoelectric material and spaced apart electrodes disposed on the planar member and coupled to the piezoelectric material for applying an electric field to the layer, and an acoustic backing member joined to the electrodes. In another embodiment, the transducer includes a planar member having a piezoelectric material that adjoins a semiconductor material, the semiconductor material having monolithically formed active circuits formed in the layer and coupled to the piezoelectric material. In still another embodiment, the transducer includes a planar member having a piezoelectric material, and an acoustic backing member having an adjoining layer of a semiconductor material having monolithically formed active circuits, the active circuits being coupled to the electrodes.

    摘要翻译: 本发明涉及用于微型薄膜超声换能器的结构,以及制造该结构的方法。 在一个实施例中,换能器包括平面构件,其具有压电材料和间隔开的电极,其设置在平面构件上并且耦合到用于向该层施加电场的压电材料,以及连接到电极的声学背衬构件。 在另一个实施例中,换能器包括具有邻接半导体材料的压电材料的平面构件,该半导体材料在该层中形成并且耦合到压电材料上的单片形式的有源电路。 在另一个实施例中,换能器包括具有压电材料的平面构件,以及具有具有单片形成的有源电路的半导体材料的邻接层的声学背衬构件,所述有源电路耦合到所述电极。

    Device and method for adapting the radiation dose of an X-ray source
    9.
    发明授权
    Device and method for adapting the radiation dose of an X-ray source 失效
    用于适应X射线源的辐射剂量的装置和方法

    公开(公告)号:US06650729B2

    公开(公告)日:2003-11-18

    申请号:US10160310

    申请日:2002-05-31

    IPC分类号: H05G144

    CPC分类号: A61B6/542 A61B6/00

    摘要: The invention relates to a method and a device for adapting a radiation dose of an X-ray source (1). The X-ray source (1) irradiates an object to be examined, for example, a patient (4), so as to form an X-ray image (7) on an X-ray detector (5). The X-ray image (7) is subdivided into image regions (A-I) and each time the brightest image region is successively separated from the remaining image regions in an iterative method if its mean grey value forms an indication of the presence of direct radiation (2b) in the relevant image region. The image regions still remaining at the end of the iteration operation correspond to an image region of interest which can be taken into account by a control unit (6) so as to calculate the optimum radiation dose.

    摘要翻译: 本发明涉及一种用于调整X射线源(1)的辐射剂量的方法和装置。 X射线源(1)照射被检体,例如患者(4),以在X射线检测器(5)上形成X射线图像(7)。 X射线图像(7)被细分为图像区域(AI),并且每当最亮图像区域以迭代方法与其余图像区域连续分离时,如果其平均灰度值形成直射辐射的存在的指示( 2b)在相关图像区域。 仍然保持在迭代操作结束的图像区域对应于可以由控制单元(6)考虑的感兴趣的图像区域,以便计算最佳辐射剂量。

    Method and device for the processing of X-ray images

    公开(公告)号:US06647093B2

    公开(公告)日:2003-11-11

    申请号:US10084758

    申请日:2002-02-25

    IPC分类号: H05G144

    摘要: The invention relates to a method and a device for the processing of X-ray images which can be used notably in medical fluoroscopy procedures since they keep the overall radiation load for a patient low. Processing of and detail enhancement in the X-ray images is preferably performed by means of a pattern matching algorithm which necessitates prior knowledge of a pattern of the detail of interest. In order to extract this pattern, at least one single image (HD) is formed (2) with a higher dose rate, said single image having an image quality which suffices for the automatic (4) or non-automatic (3) recognition of the pattern. The information extracted from this single image serves as a basis for the evaluation of X-ray images (LD2) formed with a lower dose rate.