摘要:
An improved container and method for forming billets using hot isostatic pressing is provided. The method and container allows for adjusting the volume of the container so as to obtain a billet of the desired shape based on selected powder charge for the container. In addition, the corner of the container can be adjusted to allow for elimination of edge effects and further shape control in the resulting billet.
摘要:
An improved method and container for forming billets using hot isostatic pressing is provided. The improved method and container have features that control the deformations of the container during the high temperatures and pressures experienced in such processing so as to provide a billet having a predetermined shape such as, for example, substantially parallel, convex, and/or concave sides. Conservations of the powder used for the billet and more efficient use of the container upon the resulting billet can be achieved.
摘要:
A method and container for forming billets using hot isostatic pressing is provided. The method and container prevent or minimize the diffusion of metals between a high value powder alloy and the container used for hot isostatic pressing. In one exemplary embodiment, a diffusion barrier is placed on the container between the powder and the container to control diffusion therebetween.
摘要:
A forging die and process suitable for producing large forgings, including turbine disks and other rotating components of power-generating gas turbine engines, using billets formed by powder metallurgy. The forging die includes a backplate, and segments arranged in a radial pattern about a region on a surface of the backplate. Each segment has a backside facing the backplate and an interface surface facing away from the backplate, with the interface surface being adapted to engage the billet during forging. The segments are physically coupled to the surface of the backplate in a manner that enables radial movement of the segments relative to the backplate.
摘要:
A method for forming an oxide-dispersion strengthened coating on a metal substrate is disclosed. The method generally includes comminuting MCrAlY alloy particles to form an oxygen-enriched powder, wherein at least about 25% by volume of the MCrAlY alloy particles within the oxygen-enriched powder have a particle size of less than about 5 μm. Additionally, the method includes applying the oxygen-enriched powder to the metal substrate to form a coating and heating the oxygen-enriched powder to precipitate oxide dispersoids within the coating.
摘要:
Components and methods of processing such components from precipitation-strengthened alloys so that the components exhibit desirable grain sizes following a supersolvus heat treatment. The method includes consolidating a powder of the alloy to form a billet having an average grain size. The billet is then forged at a temperature below the solvus temperature to form a forging having an average grain size of not coarser than the grain size of the billet. The billet is then forged at a total strain of at least 5%, after which at least a portion of the forging is heat treated at a temperature below the solvus temperature to pin grains within the portion. The entire forging can then be heat treated at a temperature above the solvus temperature of the alloy without coarsening the grains in the portion.
摘要:
A forging preform for a turbine rotor disk is disclosed. The preform includes a body of a superalloy material having a mass of about 5000 lbs or more, the superalloy material having a substantially homogeneous grain morphology and an ASTM average grain size of 10 or smaller. 5. A turbine rotor disk is also disclosed. The disk includes a substantially cylindrical disk of a superalloy material having a mass of about 5000 lbs or more, the superalloy material having a substantially homogeneous grain morphology and an ASTM average grain size of about 10 or smaller. A method of making a turbine rotor disk is also disclosed. The method includes providing a superalloy powder material and pressing the superalloy powder material to form a forging preform for a turbine rotor disk.
摘要:
Improved methods and containers for forming billets using hot isostatic pressing are provided. The methods and containers have features that control the deformations of the container during the high temperatures and pressures experienced in such processing so that the loss or removal of material from the resulting billet can be optimized.
摘要:
Components and methods of processing such components from precipitation-strengthened alloys so that the components exhibit desirable grain sizes following a supersolvus heat treatment. The method includes consolidating a powder of the alloy to form a billet having an average grain size. The billet is then forged at a temperature below the solvus temperature to form a forging having an average grain size of not coarser than the grain size of the billet. The billet is then forged at a total strain of at least 5%, after which at least a portion of the forging is heat treated at a temperature below the solvus temperature to pin grains within the portion. The entire forging can then be heat treated at a temperature above the solvus temperature of the alloy without coarsening the grains in the portion.
摘要:
A method for forming an oxide-dispersion strengthened coating on a metal substrate is disclosed. The method generally includes comminuting MCrAlY alloy particles to form an oxygen-enriched powder, wherein at least about 25% by volume of the MCrAlY alloy particles within the oxygen-enriched powder have a particle size of less than about 5 μm. Additionally, the method includes applying the oxygen-enriched powder to the metal substrate to form a coating and heating the oxygen-enriched powder to precipitate oxide dispersoids within the coating.