摘要:
Disclosed herein is a framework for facilitating synchronized image navigation. In accordance with one aspect, at least first and second medical images are received. A non-linear mapping between the first and second medical images is generated. A selection of a given location in the first medical image is received in response to a user's navigational operation. Without deforming the second medical image, a target location in the second medical image is determined by using the non-linear mapping. The target location corresponds to the given location in the first medical image. An optimized deformation-free view of the second medical image is generated based at least in part on the target location. While the user performs navigational operations on the first medical image, the framework repeatedly receives the selection of the given location, determines the target location using the non-linear mapping, and generates the optimized deformation-free view of the second medical image based at least in part on the target location.
摘要:
Disclosed herein is a framework for facilitating synchronized image navigation. In accordance with one aspect, at least first and second medical images are received. A non-linear mapping between the first and second medical images is generated. A selection of a given location in the first medical image is received in response to a user's navigational operation. Without deforming the second medical image, a target location in the second medical image is determined by using the non-linear mapping. The target location corresponds to the given location in the first medical image. An optimized deformation-free view of the second medical image is generated based at least in part on the target location. While the user performs navigational operations on the first medical image, the framework repeatedly receives the selection of the given location, determines the target location using the non-linear mapping, and generates the optimized deformation-free view of the second medical image based at least in part on the target location.
摘要:
Disclosed herein is a framework for facilitating adaptive anatomical region prediction. In accordance with one aspect, a set of exemplar images including annotated first landmarks is received. User definitions of first anatomical regions in the exemplar images are obtained. The framework may detect second landmarks in a subject image. It may further compute anatomical similarity scores between the subject image and the exemplar images based on the first and second landmarks, and predict a second anatomical region in the subject image by adaptively combining the first anatomical regions based on the anatomical similarity scores.
摘要:
Disclosed herein is a framework for facilitating adaptive anatomical region prediction. In accordance with one aspect, a set of exemplar images including annotated first landmarks is received. User definitions of first anatomical regions in the exemplar images are obtained. The framework may detect second landmarks in a subject image. It may further compute anatomical similarity scores between the subject image and the exemplar images based on the first and second landmarks, and predict a second anatomical region in the subject image by adaptively combining the first anatomical regions based on the anatomical similarity scores.
摘要:
Systems and methods for automatic accurate and efficient segmentation and identification of one or more vertebra in digital medical images using a coarse-to-fine segmentation.
摘要:
Systems and methods for automatic accurate and efficient segmentation and identification of one or more vertebra in digital medical images using a coarse-to-fine segmentation.
摘要:
Described herein is a framework for constructing a hierarchical classifier for facilitating classification of digitized data. In one implementation, a divergence measure of a node of the hierarchical classifier is determined. Data at the node is divided into at least two child nodes based on a splitting criterion to form at least a portion of the hierarchical classifier. The splitting criterion is selected based on the divergence measure. If the divergence measure is less than a predetermined threshold value, the splitting criterion comprises a divergence-based splitting criterion which maximizes subsequent divergence after a split. Otherwise, the splitting criterion comprises an information-based splitting criterion which seeks to minimize subsequent misclassification error after the split.
摘要:
Described herein is a framework for constructing a hierarchical classifier for facilitating classification of digitized data. In one implementation, a divergence measure of a node of the hierarchical classifier is determined. Data at the node is divided into at least two child nodes based on a splitting criterion to form at least a portion of the hierarchical classifier. The splitting criterion is selected based on the divergence measure. If the divergence measure is less than a predetermined threshold value, the splitting criterion comprises a divergence-based splitting criterion which maximizes subsequent divergence after a split. Otherwise, the splitting criterion comprises an information-based splitting criterion which seeks to minimize subsequent misclassification error after the split.
摘要:
Systems and methods are provided for detecting anatomical components in images. In accordance with one implementation, at least one anchor landmark is detected in an image. The position of the anchor landmark is used to detect at least one bundle landmark in the image. In accordance with another implementation, at least two neighboring landmarks are detected in an image, and used to detect at least one anatomical primitive in the image.
摘要:
Described herein is a technology for facilitating deformable model-based segmentation of image data. In one implementation, the technology includes receiving training image data (202) and automatically constructing a hierarchical structure (204) based on the training image data. At least one spatially adaptive boundary detector is learned based on a node of the hierarchical structure (206).