摘要:
A touch-sensitive sensor arrangement includes a planar-shaped element having a surface provided with a conductive layer, and a plurality of connecting points that are each arranged in an edge area of the element and contacting the conductive layer, wherein a respective decoupling device is arranged for decoupling a current, which is applied to at least two connecting points, from an evaluating signal, between each of the respective connecting points and associated connecting lines for the evaluation of a position of a contact of the element with a contacting object, where the element is heatable by the current.
摘要:
The invention serves to take account of the reaction time of an item of equipment to be driven which, when a travel reference value, serving as a way-mark, is reached on a travel of an item of equipment in an industrial plant, is intended to be activated or deactivated, the travel being able to be covered at different speeds. The invention has the following elements: a position transmitter to register the actual value of the travel, means for storing the reaction time of the item of equipment to be driven, means for storing a first actual value of the travel ("starting actual value"), means for storing a second actual value of the travel after a time period corresponding to the reaction time of the item of equipment to be driven has elapsed ("final actual value"), means for determining a current magnitude of a lead travel by subtracting the first stored actual value from the second, and means for reducing the travel reference value ("corrected travel reference value") or increasing the actual value of the travel ("dynamized actual value") by the current magnitude of the lead travel.
摘要:
A first value (V), which corresponds to the angular units covered during two actual position values successively transmitted via the data transmission link at the maximum rotational speed of the encoder shaft (W), and a second value (D) which corresponds to the difference between the maximum travel of the angular position encoder (MAX) and the first value (V), are stored in a store. A processing unit determines the direction of rotation of the shaft (W) depending on whether two actual position values (X11, X12; X21, X22; X31, X32) lie in the range between the zero point (NP) of the angular position encoder and an actual position value (L2) corresponding to the magnitude of the first stored value (V), or in the range between an actual position value (L1) corresponding to the magnitude of the second stored value (D) and the maximum travel (MAX), or outside these ranges. The invention has the advantage that, in spite of the possible occurrence of unexpected or fault-induced large changes in magnitude in the detected actual angular position values, the direction of rotation of the shaft of the angular position encoder can be ascertained correctly in each case.