Abstract:
A tree harvesting machine is disclosed which is of the type having a wheel-mounted frame, a tree harvesting mechanism at the front and a berth at the rear for accumulated felled trees. An inverted tree grapple is provided forwardly of the berth and is mounted to the berth so that it can be slid to and from the berth whereby the grapple may be held close to the berth during accumulation of felled trees and moved away from the berth when loaded. In this last position, the center of gravity of the load has thus been shifted forwardly. The berth itself is pivoted to the frame to allow loading to take place in rearwardly inclined position. Once loaded, the berth may then be uprighted easily since the center of gravity of the load has shifted forwardly.
Abstract:
The segregating unit of the invention is installed in a sewer pipe section having an upstream end and a downstream end, and a peripheral wall including a floor and a ceiling. The segregating unit comprises a bar screen having two straight panels composed of horizontally disposed, vertically stacked, spaced-apart bars. The two panels span the whole width and height of the pipe in a downstream convergent fashion, thus forming a V at their adjacent edges which open adjacent the pipe floor portion into an elongated, rigid, cylindrical sleeve member radially smaller than the pipe and upwardly inclined, extending through the pipe ceiling. The sleeve member comprises an output mouth located outside the pipe section, which opens into a storage box cart. An endless screw is coaxially installed inside the sleeve member and is driven into rotation by a motor. The upstream edge face of each bar is formed with a longitudinal channel, the cross-sectional area of which decreases from the upstream end to the downstream end of the bar. In use, the macroparticulate debris carried by the water flowing through the pipe section upstream end will hit the bar screen and travel therealong being assisted by the water film produced by the water accerelating in the bar channels and laterally overflowing the same. The debris it reaches the merging edge of the two screen panels under the hydrodynamic propulsion of the water flow. Under the effect of gravity, the debris will be dragged down to the bottom of the pipe, where it will be driven by the water flow into the sleeve member. The endless screw will in turn drive the debris up the sleeve member, to be dispatched through the output mouth into the storage box cart. Holes are also provided on the sleeve member wall inside the pipe to drain the interior of the sleeve member from water.
Abstract:
The screening apparatus of the invention has a main cylindrical chamber linking a waste water inlet pipe to a refuse pipe and to an overflow outlet pipe. The waste water inlet pipe conveys water from a city sewer duct or the like, and this water is destined to be conveyed to a water treatment plant through the refuse pipe. However, during important storm water flow rate conditions in the waste water inlet pipe, the water level in the main chamber will rise since the refuse pipe will overflow due to a too large quantity of water. The screening apparatus includes a coaxial, cylindrical rotor defining a vertical through channel, and an annular grate being located intermediate the top and bottom of the main chamber and extending from the bottom edge of the rotor radially outwardly to the peripheral wall of the main chamber, where the annular grate is fixedly anchored. The rotor carries brooms adjacent the grate underface. Thus, when the water level rises, it passes through the grate to be effectively screened before it reaches the overflow pipe outlet, to be returned into the environment. The rotor can rotate under the power of the water flow, by means of downwardly projecting blades, so that the brooms will rotate to sweep the whole grate underface and help prevent clogging of the grate by macroparticles. The waste water pipe is connected to the main chamber in an eccentrical fashion, so as to create a water vortex when the water flows into the main chamber.
Abstract:
The screen comprises a set of spaced parallel grating bars set at an inclination of about 35 degrees. The grating bars retain solids carried by the water flowing between the bars. These solids are automatically pushed down the bars and away into a collecting trough transverse to the bars by water streams flowing within longitudinal grooves formed from the top of the bars. The cross-sectional area of each groove decreases from the upper end to the lower end of the bar, so that the water accelerating down the bar grooves will constantly fill the same.
Abstract:
The water screening apparatus of the invention includes a conduit in which is positioned a discharge pipe opening through which water flowing in the conduit is to be dispatched completely during normal water flow conditions. The discharge pipe opening is positioned adjacent the conduit bottom wall portion so that as long as the water level does not rise above it, the water is completely dispatched therethrough. A bar screen is transversely disposed inside the water conduit and downwardly slopes from the conduit upstream end to the discharge pipe opening and covers the whole conduit width. When the water level rises above the discharge pipe opening, the water flowing above the discharge pipe opening will flow through the bar screen, the latter intercepting any macroparticles beyond a set threshold level carried by the water flow. These intercepted solid particles will slide along the bar screen under the pressure exerted by the water flow, to be carried in this way into the refuse discharge pipe to be disposed of along with part of the water flow. This way, during water overflow conditions, even if the water is not completely disposed of by means of the discharge pipe opening, the overflow water will not carry large solids or suspended matter, since it will be screened before being conveyed elsewhere, for example to a river.
Abstract:
A rake, in which its tines are inserted and moved between the parallel, uniformly spaced, bars of a grating for debris removal. The rake includes a base and plurality of equally spaced parallel tines forming blades integrally moulded with the base out of a thermoplastic with memory characteristics. The thickness of each blade is about 1/16 its width, each blade is easily flexible thicknesswise, that is in a direction transverse to the grating bars but has practically no flexibility in the direction of the grating bars. The distance between the grating bars is two to four times the rake tines thickness so that at least two rake tines can be inserted between two adjacent grating bars.