Abstract:
Systems and methods are provided for associating position information and sound. The method includes obtaining position information of an object at a given time; obtaining position information of a camera at the given time; determining a relative position of the object relative to the camera's position; and associating sound information with the relative position of the object. In another aspect, the position and orientation of a microphone are also tracked to calibrate the sound produced by an object or person, and the calibrated sound is associated with the relative position of the object, that is relative to the camera.
Abstract:
Systems and methods are provided for tracking at least position and angular orientation. The system comprises a computing device in communication with at least two cameras, wherein each of the cameras are able to capture images of one or more light sources attached to an object. A receiver is in communication with the computing device, wherein the receiver is able to receive at least angular orientation data associated with the object. The computing device determines the object's position by comparing images of the light sources and generates an output comprising the position and angular orientation of the object.
Abstract:
A configurable real-time environment tracking and command module (RTM) is provided to coordinate one or more than one devices or objects in a physical environment. A virtual environment is created to correlate with various objects and attributes within the physical environment. The RTM is able to receive data about attributes of physical objects and accordingly update the attributes of correlated virtual objects in the virtual environment. The RTM is also able to provide data extracted from the virtual environment to one or more than devices, such as robotic cameras, in real-time. An interface to the RTM allows multiple devices to interact with the RTM, thereby coordinating the devices.
Abstract:
Systems and methods are provided for associating position information and sound. The method includes obtaining position information of an object at a given time; obtaining position information of a camera at the given time; determining a relative position of the object relative to the camera's position; and associating sound information with the relative position of the object. In another aspect, the position and orientation of a microphone are also tracked to calibrate the sound produced by an object or person, and the calibrated sound is associated with the relative position of the object, that is relative to the camera.
Abstract:
A configurable real-time environment tracking and command module (RTM) is provided to coordinate one or more than one devices or objects in a physical environment. A virtual environment is created to correlate with various objects and attributes within the physical environment. The RTM is able to receive data about attributes of physical objects and accordingly update the attributes of correlated virtual objects in the virtual environment. The RTM is also able to provide data extracted from the virtual environment to one or more than devices, such as robotic cameras, in real-time. An interface to the RTM allows multiple devices to interact with the RTM, thereby coordinating the devices.
Abstract:
A system and method are provided for obtaining a 3D cue path and timing. In one example aspect, this path and timing may be manipulated in software. In another example aspect, one or more conditions may be specified which pertain to the path, timing, state of the path's environment, or state of one or more objects or actors in the path's environment. In another example aspect, these conditions may be accompanied by specifications for one or more actions to be taken if one or more of the conditions are or are not satisfied. In another example aspect, a person or object may be monitored as they follow the path, and prescribed actions may be taken if the specified conditions are or are not found to be satisfied.
Abstract:
A system and method are provided for obtaining a 3D cue path and timing. In one example aspect, this path and timing may be manipulated in software. In another example aspect, one or more conditions may be specified which pertain to the path, timing, state of the path's environment, or state of one or more objects or actors in the path's environment. In another example aspect, these conditions may be accompanied by specifications for one or more actions to be taken if one or more of the conditions are or are not satisfied. In another example aspect, a person or object may be monitored as they follow the path, and prescribed actions may be taken if the specified conditions are or are not found to be satisfied.
Abstract:
Systems and methods are provided for tracking at least position and angular orientation. The system comprises a computing device in communication with at least two cameras, wherein each of the cameras are able to capture images of one or more light sources attached to an object. A receiver is in communication with the computing device, wherein the receiver is able to receive at least angular orientation data associated with the object. The computing device determines the object's position by comparing images of the light sources and generates an output comprising the position and angular orientation of the object.
Abstract:
A system and a method are provided for visualizing virtual objects on a mobile device. A computing device is in communication with the mobile device. The computing device generates a 3D virtual world of one or more virtual objects corresponding to one or more physical objects in a real world. The computing device then associates information with the one or more virtual objects and generates one or more static images based on the 3D virtual world. The mobile device receives the one or more static images and the associated information associated from the computing device, and then displays the one or more static images.
Abstract:
A system and a method are provided for visualizing virtual objects on a mobile device. A computing device is in communication with the mobile device. The computing device generates a 3D virtual world of one or more virtual objects corresponding to one or more physical objects in a real world. The computing device then associates information with the one or more virtual objects and generates one or more static images based on the 3D virtual world. The mobile device receives the one or more static images and the associated information associated from the computing device, and then displays the one or more static images.