Zero Index Material Omnireflectors and Waveguides
    1.
    发明申请
    Zero Index Material Omnireflectors and Waveguides 审中-公开
    零索引材料全反射体和波导

    公开(公告)号:US20090310926A1

    公开(公告)日:2009-12-17

    申请号:US12546309

    申请日:2009-08-24

    IPC分类号: G02B6/10 G02F1/00 G02B5/30

    摘要: We have shown that a single layer of a 3D Zero Index Material (ZIM) has omnidirectional reflection properties. In the range between the electric plasma frequency and the magnetic plasma frequency, ZIM reflect radiation for all angles of incidence and polarization with reflectivities of ˜99%. In addition, with increasing angles of incidence, the reflecting band does not shift in frequency but actually widens. The operational bandwidth can be 100% or greater by increasing the separation between the electric and magnetic plasma frequencies. We have also shown that in the spectral region that allows the omnidirectional gap, ZIM can be used as the cladding of hollow waveguides with better performance than traditional hollow waveguides.

    摘要翻译: 我们已经表明,单层3D零索引材料(ZIM)具有全向反射特性。 在等离子体等离子体频率与等离子体等离子体频率之间的范围内,ZIM反射辐射为所有入射角和极化,反射率为〜99%。 另外,随着入射角的增加,反射带的频率不会发生变化,而是实际上变宽。 通过增加电和等离子体频率之间的间隔可以使操作带宽达到100%以上。 我们还表明,在允许全向间隙的光谱区域中,ZIM可以被用作具有比传统空心波导更好性能的空心波导的包层。

    Zero index material omnireflectors and waveguides
    2.
    发明授权
    Zero index material omnireflectors and waveguides 失效
    零索引材料全反射体和波导

    公开(公告)号:US07580604B2

    公开(公告)日:2009-08-25

    申请号:US11278521

    申请日:2006-04-03

    IPC分类号: G02B6/10 G02F1/00 G02B5/30

    摘要: We have shown that a single layer of a 3D Zero Index Material (ZIM) has omnidirectional reflection properties. In the range between the electric plasma frequency and the magnetic plasma frequency, ZIM reflect radiation for all angles of incidence and polarization with reflectivities of ˜99%. In addition, with increasing angles of incidence, the reflecting band does not shift in frequency but actually widens. The operational bandwidth can be 100% or greater by increasing the separation between the electric and magnetic plasma frequencies. We have also shown that in the spectral region that allows the omnidirectional gap, ZIM can be used as the cladding of hollow waveguides with better performance than traditional hollow waveguides.

    摘要翻译: 我们已经表明,单层3D零索引材料(ZIM)具有全向反射特性。 在等离子体等离子体频率与等离子体等离子体频率之间的范围内,ZIM反射辐射为所有入射角和极化,反射率为〜99%。 另外,随着入射角的增加,反射带的频率不会发生变化,而是实际上变宽。 通过增加电和等离子体频率之间的间隔可以使操作带宽达到100%以上。 我们还表明,在允许全向间隙的光谱区域中,ZIM可以被用作具有比传统空心波导更好性能的空心波导的包层。

    Zero Index Material Omnireflectors and Waveguides
    3.
    发明申请
    Zero Index Material Omnireflectors and Waveguides 失效
    零索引材料全反射体和波导

    公开(公告)号:US20070237478A1

    公开(公告)日:2007-10-11

    申请号:US11278521

    申请日:2006-04-03

    IPC分类号: G02B6/10

    摘要: We have shown that a single layer of a 3D Zero Index Material (ZIM) has omnidirectional reflection properties. In the range between the electric plasma frequency and the magnetic plasma frequency, ZIM reflect radiation for all angles of incidence and polarization with reflectivities of ˜99%. In addition, with increasing angles of incidence, the reflecting band does not shift in frequency but actually widens. The operational bandwidth can be 100% or greater by increasing the separation between the electric and magnetic plasma frequencies. We have also shown that in the spectral region that allows the omnidirectional gap, ZIM can be used as the cladding of hollow waveguides with better performance than traditional hollow waveguides.

    摘要翻译: 我们已经表明,单层3D零索引材料(ZIM)具有全向反射特性。 在等离子体等离子体频率与等离子体等离子体频率之间的范围内,ZIM反射辐射为所有入射角和极化,反射率为〜99%。 另外,随着入射角的增加,反射带的频率不会发生变化,而是实际上变宽。 通过增加电和等离子体频率之间的间隔可以使操作带宽达到100%以上。 我们还表明,在允许全向间隙的光谱区域中,ZIM可以被用作具有比传统空心波导更好性能的空心波导的包层。

    Photonic signal frequency up and down-conversion using a photonic band gap structure
    4.
    发明授权
    Photonic signal frequency up and down-conversion using a photonic band gap structure 失效
    使用光子带隙结构的光子信号频率上下转换

    公开(公告)号:US06744552B2

    公开(公告)日:2004-06-01

    申请号:US09742295

    申请日:2000-12-22

    IPC分类号: G02F202

    摘要: A photonic band gap (PBG) device is provided for frequency up and/or down-converting first and second photonic signals incident on the device to produce a down-converted output photonic signal. When the first and second incident photonic signals have respective first and second frequencies &ohgr;3 and &ohgr;2, the down-converted photonic signal has a third frequency &ohgr;1=&ohgr;3−&ohgr;2. When the first incident field has a frequency &ohgr;1, the first up-converted photonic signal has a second frequency &ohgr;2. The second up-converted photonic signal has a third frequency &ohgr;3=&ohgr;1+&ohgr;2. Thus, the PBG device can be used to generate coherent near- and mid-IR signals by frequency down-converting photonic signals from readily available photonic signal sources, or red, blue, and ultraviolet signals by up-converting the same readily available photonic signal sources.

    摘要翻译: 提供了一种光子带隙(PBG)器件,用于对入射到器件上的第一和第二光子信号进行上变频和/或下变频以产生下变频的输出光子信号。 当第一和第二入射光子信号具有相应的第一和第二频率ω3和ω2时,下转换的光子信号具有第三频率ω1 =ω3-ω2。 当第一入射场具有频率ω1时,第一上变频光子信号具有第二频率ω2。 第二次上转换的光子信号具有第三频率ω3=ω1+ω2。 因此,PBG器件可以用于通过从容易获得的光子信号源或红色,蓝色和紫外信号中的光子信号降频转换相同容易获得的光子信号而产生相干近红外信号和中红外信号 来源。

    Efficient non-linear phase shifting using a photonic band gap structure
    5.
    发明授权
    Efficient non-linear phase shifting using a photonic band gap structure 失效
    使用光子带隙结构进行有效的非线性相移

    公开(公告)号:US06538794B1

    公开(公告)日:2003-03-25

    申请号:US09672835

    申请日:2000-09-29

    IPC分类号: G02F101

    摘要: A device is provided for generating a photonic signal having a phase different from an input photonic signal that is incident on the device. The input photonic signal has an signal frequency, signal bandwidth, and a signal intensity. The device comprises a plurality of material layers. The material layers are arranged such that the device exhibits a photonic band gap structure. The photonic band gap structure exhibits a transmission band edge that corresponds to the input photonic signal frequency. A second photonic signal is generated at a second photonic frequency preferably close to a second band edge. The interaction of the input photonic signal with the second photonic signal generates a phase shift of order &pgr; for relatively small input intensities.

    摘要翻译: 提供了一种用于产生具有与入射到设备上的输入光子信号不同的相位的光子信号的装置。 输入光子信号具有信号频率,信号带宽和信号强度。 该装置包括多个材料层。 材料层被布置成使得该器件呈现光子带隙结构。 光子带隙结构表现出对应于输入光子信号频率的透射带边缘。 第二光子信号以优选地接近第二带边缘的第二光子频率产生。 输入光子信号与第二光子信号的相互作用产生相对较小输入强度的阶数p i的相移。

    Photonic band gap device and method using a periodicity defect region to
increase photonic signal delay

    公开(公告)号:US5907427A

    公开(公告)日:1999-05-25

    申请号:US956112

    申请日:1997-10-24

    IPC分类号: G02B6/122 G02B6/28 G02B1/10

    摘要: A photonic band gap structure device and method for delaying photonic signals of a predetermined frequency and a predetermined bandwidth by a predetermined delay is provided. A Fabry-Perot delay line device has several regions of periodically alternating refractive material layers which exhibit a series of photonic band gaps and a periodicity defect region, interposed between the regions of periodically alternating refractive material layers. The Fabry-Perot delay line device imparts a predetermined delay to photonic signals that pass therethrough. The introduction of the periodicity defect region into this photonic band gap structure creates a sharp transmission resonance within the corresponding photonic band gap of the structure and causes at least an order of magnitude improvement in photonic signal delay for a band-edge delay line device of similar size. Variable photonic delays to multiple photonic signals are also generated by this Fabry-Perot delay line device. In addition, a photonic signal delay device based on an optical fiber grating structure is provided.

    Photonic signal reflectivity and transmissivity control using a photonic band gap structure
    8.
    发明授权
    Photonic signal reflectivity and transmissivity control using a photonic band gap structure 失效
    使用光子带隙结构的光子信号反射率和透射率控制

    公开(公告)号:US06414780B1

    公开(公告)日:2002-07-02

    申请号:US09471036

    申请日:1999-12-23

    IPC分类号: G02F103

    摘要: Non-linear reflectivity and non-linear transmissivity of a first photonic signal incident on a photonic band gap (PBG) structure are controlled by applying a second photonic signal to the PBG structure while the first photonic signal is incident on the PBG structure. The first and second photonic signals have respective frequencies near a low frequency, first order band gap edge and a high frequency, second order band gap edge resonance peak of the PBG structure. The first photonic signal undergoes enhanced non-linear gain near the band gap edges when a predetermined phase difference is imposed between the first and second photonic signals, resulting in dramatic reflectivity and transmissivity changes for a band gap structure of only a few microns in length.

    摘要翻译: 通过在第一光子信号入射到PBG结构上时向PBG结构施加第二光子信号来控制入射在光子带隙(PBG)结构上的第一光子信号的非线性反射率和非线性透射率。 第一和第二光子信号具有接近PBG结构的低频,一阶带隙边缘和高频二阶带隙边缘共振峰值的相应频率。 当在第一和第二光子信号之间施加预定的相位差时,第一光子信号在带隙边缘附近经历增强的非线性增益,导致长度仅为几微米的带隙结构的显着的反射率和透射率变化。

    Photonic crystal-based optical waveguide modulator
    9.
    发明授权
    Photonic crystal-based optical waveguide modulator 失效
    光子晶体光波导调制器

    公开(公告)号:US07412144B2

    公开(公告)日:2008-08-12

    申请号:US11188062

    申请日:2005-07-22

    IPC分类号: G02B6/10

    摘要: A waveguide has upper and lower cladding regions. A core of the waveguide made of a non-linear optical polymer is positioned between the upper and lower cladding regions. A first electrode is connected to the upper cladding region and a second electrode is connected to the lower cladding region. The upper cladding region and the lower cladding region are made of photonic band gap materials and have multiple periods of cladding layers with each period having a first layer having a linear refractive index of n1 and each period having a second layer having a linear refractive index of n2. The waveguide allows for minimal distances to exist between the electrodes while allowing for virtual lossless cm-long transmission of propagating light. By applying a voltage to the electrodes, the propagated light can be modulated.

    摘要翻译: 波导具有上和下包层区域。 由非线性光学聚合物制成的波导的芯部位于上部和下部包层区域之间。 第一电极连接到上包层区域,第二电极连接到下包层区域。 上包层区域和下包层区域由光子带隙材料制成并且具有多个包覆层的周期,每个周期具有线性折射率为n 1的第一层,并且每个周期具有 第二层具有n 2的线性折射率。 波导允许在电极之间存在最小的距离,同时允许传播光的虚拟无损的cm长的透射。 通过向电极施加电压,可以调制传播的光。

    Photonic band gap device and method using a periodicity defect region to increase photonic signal delay
    10.
    发明授权
    Photonic band gap device and method using a periodicity defect region to increase photonic signal delay 失效
    光子带隙器件和方法使用周期性缺陷区域来增加光子信号延迟

    公开(公告)号:US06343167B1

    公开(公告)日:2002-01-29

    申请号:US09250283

    申请日:1999-02-16

    IPC分类号: G02B634

    摘要: A photonic band gap structure device and method for delaying photonic signals of a predetermined frequency and a predetermined bandwidth by a predetermined delay is provided. A Fabry-Perot delay line device has several regions of periodically alternating refractive material layers which exhibit a series of photonic band gaps and a periodicity defect region, interposed between the regions of periodically alternating refractive material layers. The Fabry-Perot delay line device imparts a predetermined delay to photonic signals that pass therethrough. The introduction of the periodicity defect region into this photonic band gap structure creates a sharp transmission resonance within the corresponding photonic band gap of the structure and causes at least an order of magnitude improvement in photonic signal delay for a band-edge delay line device of similar size. Variable photonic delays to multiple photonic signals are also generated by this Fabry-Perot delay line device. In addition, a photonic signal delay device based on an optical fiber grating structure is provided.

    摘要翻译: 提供了一种用于将预定频率和预定带宽的光子信号延迟预定延迟的光子带隙结构装置和方法。 法布里 - 珀罗延迟线器件具有周期性地交替的折射材料层的几个区域,其表现出一系列光子带隙和周期性缺陷区域,介于周期性交替的折射材料层的区域之间。 法布里 - 珀罗延迟线装置对通过其中的光子信号施加预定的延迟。 在该光子带隙结构中引入周期性缺陷区域在该结构的对应的光子带隙内产生尖锐的透射谐振,并且对于类似的带边延迟线器件,对于光子信号延迟至少有一个数量级的改善 尺寸。 该法布里 - 珀罗延迟线设备也产生了对多个光子信号的可变光子延迟。 另外,提供了一种基于光纤光栅结构的光信号延迟器件。