Method and system for automated software control of waterjet orientation parameters
    1.
    发明授权
    Method and system for automated software control of waterjet orientation parameters 有权
    水枪定向参数自动化软件控制方法与系统

    公开(公告)号:US06996452B2

    公开(公告)日:2006-02-07

    申请号:US10793333

    申请日:2004-03-04

    IPC分类号: G06F19/00

    摘要: Methods and systems for automating the control of fluid jet orientation parameters are provided. Example embodiments provide a Dynamic Waterjet Control System (a “DWCS”) to dynamically control the orientation of the jet relative to the material being cut as a function of speed and other process parameters. Orientation parameters include, for example, the three dimensional orientation parameters of the jet, such as standoff compensation values and taper and lead angles of the cutting head. In one embodiment, the DWCS uses a set of predictive models to determine these orientation parameters. The DWCS preferably comprises a motion program generator/kernel, a user interface, one or more replaceable orientation and process models, and a communications interface to a fluid jet apparatus controller. In one embodiment the DWCS embedded in the controller and performs a “look-ahead” procedure to automatically control cutting head orientation.

    摘要翻译: 提供了用于自动化控制流体射流取向参数的方法和系统。 示例性实施例提供了一种动态水射流控制系统(“DWCS”),以根据速度和其它过程参数来动态地控制射流相对于被切割材料的取向。 取向参数包括例如喷射器的三维取向参数,例如切割头的间隙补偿值和锥度和导程角。 在一个实施例中,DWCS使用一组预测模型来确定这些取向参数。 DWCS优选地包括运动程序生成器/内核,用户界面,一个或多个可替换的定向和过程模型,以及到流体喷射装置控制器的通信接口。 在一个实施例中,DWCS嵌入在控制器中并执行“先行”过程以自动控制切割头取向。

    Method and system for automated software control of waterjet orientation parameters
    2.
    发明授权
    Method and system for automated software control of waterjet orientation parameters 有权
    水枪定向参数自动化软件控制方法与系统

    公开(公告)号:US06766216B2

    公开(公告)日:2004-07-20

    申请号:US09940687

    申请日:2001-08-27

    IPC分类号: G06F1900

    摘要: Methods and systems for automating the control of fluid jet orientation parameters are provided. Example embodiments provide a Dynamic Waterjet Control System (a “DWCS”) to dynamically control the orientation of the jet relative to the material being cut as a function of speed and other process parameters. Orientation parameters include, for example, the x-y position of the jet along the cutting path, as well as three dimensional orientation parameters of the jet, such as standoff compensation values and taper and lead angles of the cutting head. In one embodiment, the DWCS uses a set of predictive models to determine these orientation parameters. The DWCS preferably comprises a motion program generator/kernel, a user interface, one or more replaceable orientation and process models, and a communications interface to a fluid jet apparatus controller. Optionally the DWCS also includes a CAD module for designing the target piece. In operation, the motion program generator receives input from the CAD design module and the user interface to build a motion program that can be forwarded to and executed by the controller to control the cutting process. The replaceable models provide the motion program generator with access to sets of mathematical models that are used to determine appropriate jet orientation and process parameters. For example, in some environments, these equations are used to generate the x-position, y-position, standoff compensation value, lead angle, and taper angle of each command. The DWCS also provides two way communication between itself and the controller. The controller functions are used, for example, to display the cutting path in progress while the target piece is being cut out of the workpiece. They are also used to obtain current values of the cutting apparatus, such as the current state of attached mechanical and electrical devices.

    摘要翻译: 提供了用于自动化控制流体射流取向参数的方法和系统。 示例性实施例提供了一种动态水射流控制系统(“DWCS”),以根据速度和其它过程参数来动态地控制射流相对于被切割材料的取向。 取向参数包括例如沿着切割路径的射流的x-y位置以及射流的三维取向参数,例如切割头的间隔补偿值和锥形和引导角。 在一个实施例中,DWCS使用一组预测模型来确定这些取向参数。 DWCS优选地包括运动程序生成器/内核,用户界面,一个或多个可替换的定向和过程模型,以及到流体喷射装置控制器的通信接口。 可选地,DWCS还包括用于设计目标件的CAD模块。 在操作中,运动程序生成器接收来自CAD设计模块和用户界面的输入,以构建运动程序,该运动程序可被转发到控制器并由控制器执行以控制切割过程。 可更换型号为运动程序生成器提供访问用于确定合适的喷射方向和过程参数的数学模型集。 例如,在某些环境中,这些方程用于产生每个命令的x位置,y位置,平台补偿值,引导角和锥角。 DWCS还提供了自身与控制器之间的双向通信。 例如,当将目标件从工件切出时,使用控制器功能来显示正在进行的切割路径。 它们也用于获得切割装置的当前值,例如附接的机械和电气装置的当前状态。

    Automated determination of jet orientation parameters in three-dimensional fluid jet cutting
    3.
    发明申请
    Automated determination of jet orientation parameters in three-dimensional fluid jet cutting 有权
    在三维流体射流切割中自动确定射流取向参数

    公开(公告)号:US20110287692A1

    公开(公告)日:2011-11-24

    申请号:US12800756

    申请日:2010-05-21

    IPC分类号: B24B51/00 B24C1/00

    摘要: Methods, systems, and techniques for automatically determining jet orientation parameters to correct for potential deviations in three dimensional part cutting are provided. Example embodiments provide an Adaptive Vector Control System (AVCS), which automatically determines speeds and orientation parameters of a cutting jet to attempt to insure that a part will be cut within prescribed tolerances where possible. In one embodiment, the AVCS determines the tilt and swivel of a cutting head by mathematical predictive models that examine the cutting front for each of “m” hypothetical layers in a desired part, to better predict whether the part will be within tolerances, and to determine what corrective angles are needed to correct for deviations due to drag, radial deflection, and/or taper.

    摘要翻译: 提供了用于自动确定喷射取向参数以校正三维部分切割中的潜在偏差的方法,系统和技术。 示例性实施例提供自适应矢量控制系统(AVCS),其自动确定切割喷嘴的速度和取向参数,以试图确保在可能的情况下部件将在规定的公差内被切割。 在一个实施例中,AVCS通过数学预测模型来确定切割头的倾斜和旋转,该预测模型检查所需部分中的每个“m”个假想层的切割前沿,以更好地预测该零件是否在公差内,以及 确定需要什么矫正角度来纠正由于阻力,径向偏转和/或锥度引起的偏差。

    Automated determination of jet orientation parameters in three-dimensional fluid jet cutting
    4.
    发明授权
    Automated determination of jet orientation parameters in three-dimensional fluid jet cutting 有权
    在三维流体射流切割中自动确定射流取向参数

    公开(公告)号:US08423172B2

    公开(公告)日:2013-04-16

    申请号:US12800756

    申请日:2010-05-21

    IPC分类号: G06F19/00

    摘要: Methods, systems, and techniques for automatically determining jet orientation parameters to correct for potential deviations in three dimensional part cutting are provided. Example embodiments provide an Adaptive Vector Control System (AVCS), which automatically determines speeds and orientation parameters of a cutting jet to attempt to insure that a part will be cut within prescribed tolerances where possible. In one embodiment, the AVCS determines the tilt and swivel of a cutting head by mathematical predictive models that examine the cutting front for each of “m” hypothetical layers in a desired part, to better predict whether the part will be within tolerances, and to determine what corrective angles are needed to correct for deviations due to drag, radial deflection, and/or taper.

    摘要翻译: 提供了用于自动确定喷射取向参数以校正三维部分切割中的潜在偏差的方法,系统和技术。 示例性实施例提供自适应矢量控制系统(AVCS),其自动确定切割喷嘴的速度和取向参数,以试图确保在可能的情况下部件将在规定的公差内被切割。 在一个实施例中,AVCS通过数学预测模型确定切割头的倾斜和旋转,数学预测模型检查所需部分中的每个假想层的切割前沿,以更好地预测该零件是否在公差范围内,并且确定什么 需要校正角度来校正由于阻力,径向偏转和/或锥度引起的偏差。

    Method and system for automated software control of waterjet orientation parameters

    公开(公告)号:US20060149410A1

    公开(公告)日:2006-07-06

    申请号:US11208043

    申请日:2005-08-18

    IPC分类号: G06F19/00

    摘要: Methods and systems for automating the control of fluid jet orientation parameters are provided. Example embodiments provide a Dynamic Waterjet Control System (a “DWCS”) to dynamically control the orientation of the jet relative to the material being cut as a function of speed and other process parameters. Orientation parameters include, for example, the x-y position of the jet along the cutting path, as well as three dimensional orientation parameters of the jet, such as standoff compensation values and taper and lead angles of the cutting head. In one embodiment, the DWCS uses a set of predictive models to determine these orientation parameters. The DWCS preferably comprises a motion program generator/kernel, a user interface, one or more replaceable orientation and process models, and a communications interface to a fluid jet apparatus controller. Optionally the DWCS also includes a CAD module for designing the target piece. In operation, the motion program generator receives input from the CAD design module and the user interface to build a motion program that can be forwarded to and executed by the controller to control the cutting process. The replaceable models provide the motion program generator with access to sets of mathematical models that are used to determine appropriate jet orientation and process parameters. For example, in some environments, these equations are used to generate the x-position, y-position, standoff compensation value, lead angle, and taper angle of each command. The DWCS also provides two way communication between itself and the controller. The controller functions are used, for example, to display the cutting path in progress while the target piece is being cut out of the workpiece. They are also used to obtain current values of the cutting apparatus, such as the current state of attached mechanical and electrical devices.