摘要:
A fill pack assembly and method for assembling a fill pack from individual sheets utilizes integrally bonded sheet pairs. Each sheet pair is a pair of two individual adjacent fill sheets which have been bonded together via any suitable bonding method. A plurality of the thus formed sheet pairs can then be attached together to form an entire fill pack or portion of a fill pack. Such fill packs are useful in heat exchange devices such as industrial cooling towers.
摘要:
A heat exchange tower has an external structure including opposed sidewalls, a front barrier wall, an inlet opening below the front wall, and a rear barrier wall having an outlet at a generally upper region. A fill material generally spans the inside within the four walls, and is generally disposed above the top of the inlet and below the bottom of the outlet. A baffle protrudes inwardly from the rear barrier wall inside the tower and is located at a height above the top of the fill and below the bottom of the air outlet. A primary drift eliminator structure spans generally across the tower, and is located at the height of the baffle, so they connect to each other. A supplemental drift eliminator is provided above the primary drift eliminator, adjacent an inward edge of the baffle. At least one air turning vane angled in a generally vertical direction is provided below the fill media. An air inlet guide projects outwardly from the front wall above the inlet.
摘要:
A heat exchange splash bar for evaporative cooling. The splash bar includes a first serrated base along with a second serrated base. The splash bar additionally includes a first side wall connected to the first serrated base that extends at an angle away from the first serrated base, that includes a plurality of apertures disposed thereon. A second side wall is connected to the second serrated base that also extends at an angle away from the second serrated base. The second side wall additionally includes a plurality of apertures disposed thereon. The heat exchange splash bar additionally includes a top wall that extends between the first side wall and the second side wall, wherein said top wall includes a plurality of openings having fingers extending therein.
摘要:
A method for heating a fluid using a heating tower. The method includes the steps of drawing an air stream into the heating tower through an inlet and passing the air stream over a fill medium. The method for heating a fluid also includes passing a fluid over the fill medium along with discharging the air stream from the heating tower through an outlet. The method further includes isolating the inlet air stream from the outlet air stream.
摘要:
A method of vaporizing liquefied natural gas includes passing liquefied natural gas through a submerged combustion vaporizer having a water bath at a bath temperature and a burner to provide a vaporized gas output at a send-out temperature, drawing water from the bath of the submerged combustion vaporizer and supplying it to an atmospheric heating tower having an ambient air temperature, returning water from the atmospheric heating tower to the bath of the submerged combustion vaporizer, modulating the operating rate of the burner of the submerged combustion vaporizer, and modulating the operating rate of the atmospheric heating tower.
摘要:
A cooling tower system is provided that can exhibit increased energy efficiency that cools a process fluid or the like. The cooling tower system includes a cooling tower unit and a thermoelectric device along with a working fluid loop. The process fluid may be used to heat a working fluid for the thermoelectric device before being sent to the cooling tower for cooling. Power generated by the thermoelectric device may be utilized to operate a component of the cooling tower such as a fan or a pump. The cooling tower is also utilized to provide cooling to condense the working fluid from a vapor to a liquid form wherein the cooling tower is used to remove waste heat from a process fluid.
摘要:
A cooling tower system is provided that can exhibit increased energy efficiency. The cooling tower system includes a cooling tower unit, an expansion engine and a power operated component such as a fan or pump. The process fluid is first used to heat a working fluid for an expansion engine before being sent to the cooling tower for cooling. Power generated by the expansion engine is utilized to operate a component of the cooling tower such as a fan or a pump. The cooling tower is also utilized to provide cooling to condense the working fluid from a vapor to a liquid form cooling tower is used to remove waste heat from a process fluid.
摘要:
A method of vaporizing liquefied natural gas includes passing liquefied natural gas through a submerged combustion vaporizer having a water bath at a bath temperature and a burner to provide a vaporized gas output at a send-out temperature, drawing water from the bath of the submerged combustion vaporizer and supplying it to an atmospheric heating tower having an ambient air temperature, returning water from the atmospheric heating tower to the bath of the submerged combustion vaporizer, modulating the operating rate of the burner of the submerged combustion vaporizer, and modulating the operating rate of the atmospheric heating tower.
摘要:
A dry-air-surface heat exchanger is provided for use in a liquid cooling tower, and includes a plurality of preformed, shape-retaining heat transfer members of relatively thin synthetic resin sheet material. Each member presents a pair of upright, side-by-side panels that are preferably folded together about a vertical axis to present inward-facing wet-transfer surfaces adapted to transfer heat between the fluid and the member, and an outward-facing dry-transfer surface adapted to transfer heat between the member and air. The folded member is configured to present a series of tortuous liquid flow paths between the panels extending between the upper and lower edges, and the side edges are secured together in substantially fluid tight sealing engagement. A plurality of the folded members are provided in a pack, and a diffuser is positioned adjacent to the upper edges of the folded members for receiving hot liquid and directing the hot liquid between the panels of each member. The diffuser seats against the upper edges to substantially uniformly distribute the fluid to be cooled into the fluid passages while keeping the air passages therebetween free of fluid. The ratio of the total vertical, cross-sectional area of the liquid passages through the heat transfer members with respect to the total vertical, cross-sectional area of the air passages between the heat transfer members is from about 0.67 to about 1.5.