Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media for speech recognition. One method includes obtaining an input acoustic sequence, the input acoustic sequence representing one or more utterances; processing the input acoustic sequence using a speech recognition model to generate a transcription of the input acoustic sequence, wherein the speech recognition model comprises a domain-specific language model; and providing the generated transcription of the input acoustic sequence as input to a domain-specific predictive model to generate structured text content that is derived from the transcription of the input acoustic sequence.
Abstract:
The present invention pertains to geographical image processing of time-dependent imagery. Various assets acquired at different times are stored and processing according to acquisition date in order to generate one or more image tiles for a geographical region of interest. The different image tiles are sorted based on asset acquisition date. Multiple image tiles for the same region of interest may be available. In response to a user request for imagery as of a certain date, one or more image tiles associated with assets from prior to that date are used to generate a time-based geographical image for the user.
Abstract:
Aspects of the present disclosure relate to building volumetric data structures for intersection testing. For example, 3D data may be represented by points associated with triangles. The triangles may be rasterized to a 3D grid. Each cell of the grid may contain a set of triangles. The grid may be used to generate a new grid of larger grid cells, where each larger grid cell represents some portion of cells of the original grid. The triangle data from each new cell may then be encoded as a list of integers including the triangle data. The list of values may be run-length-encoded. The result is a single octree cube. This process may be repeated in order to generate additional octree cubes for the volumetric structure. The volumetric structure may then be used to identify triangles that intersect with a given ray.
Abstract:
Aspects of the present disclosure relate to building volumetric data structures for intersection testing. For example, 3D data may be represented by points associated with triangles. The triangles may be rasterized to a 3D grid. Each cell of the grid may contain a set of triangles. The grid may be used to generate a new grid of larger grid cells, where each larger grid cell represents some portion of cells of the original grid. The triangle data from each new cell may then be encoded as a list of integers including the triangle data. The list of values may be run-length-encoded. The result is a single octree cube. This process may be repeated in order to generate additional octree cubes for the volumetric structure. The volumetric structure may then be used to identify triangles that intersect with a given ray.