Abstract:
A system and method are provided for controlling mastership among multiple devices in a fault tolerant manner. The devices may be configured to transmit and receive redundant heartbeat signals to indicate the mastership state of the device. The signals may operate in a plurality of configurations including active-master, ready and not-ready. By detecting the signal configuration sent from the other devices, each device is capable of managing its own transitions into and out of mastership in order to ensure that there is one and only one device functioning as master.
Abstract:
A network element that allows in-band control of the network element includes a plurality of interfaces for connecting to other network elements. The network element includes a high data rate transceiver logic configured for transmitting and receiving communications having a first data rate over a first communication channel. The network element also includes a low data rate transceiver logic configured for transmitting and receiving communications having a second data rate that is substantially lower than the first data rate over a second communication channel. The network element further includes a shared photodiode for receiving optical signals over the first and second communication channels. The shared photodiode also converts received optical signals into electrical signals for processing by one of the high data rate transceiver logic and the low data rate transceiver logic. A shared laser module configured to be driven by the high data rate transceiver logic and the low data rate transceiver logic is also included in the network element to output an optical signal over a fiber optic cable via one of the first and second communication channels.
Abstract:
This disclosure provides systems, methods, and apparatus for providing a crosspoint switch used in an optical fiber data network. The crosspoint switch can switch optical signals received from any of a plurality of input optical fibers to any one of a plurality of output optical fibers. The crosspoint switch converts the optical signals received from the input optical fibers into electrical signals, switches the electrical signals, and converts the switched electrical signals back into optical signals before transmitting them over the output optical fibers. A micro-electromechanical systems (MEMS) electrical switch array is utilized to switch the electrical signals. The MEMS electrical switch array includes MEMS switching elements that allow for high frequency and high bandwidth operation of the crosspoint switch. The crosspoint switch can utilize circuit switching methodology for switching decisions.
Abstract:
A phased-array antenna assembly includes an antenna board stack, a radome configured to cover the antenna board stack, and a casing configured to support the antenna board stack. The antenna board stack includes a central core, a bottom antenna unit defining a bottom thickness between a bottom surface of the central core and a bottom end of the antenna board stack, and a top antenna unit defining a top thickness between a top surface of the central core and the top end of the antenna board stack that is substantially equal to the bottom thickness. The bottom antenna unit includes two spaced apart bottom metal layers each associated with a different distance from the axis of symmetry. The top antenna unit includes two spaced apart top metal layers each associated with a corresponding one of the distances from the axis of symmetry associated with the bottom metal layers.
Abstract:
A network element that allows in-band control of the network element includes a plurality of interfaces for connecting to other network elements. The network element includes a high data rate transceiver logic configured for transmitting and receiving communications having a first data rate over a first communication channel. The network element also includes a low data rate transceiver logic configured for transmitting and receiving communications having a second data rate that is substantially lower than the first data rate over a second communication channel. The network element further includes a shared photodiode for receiving optical signals over the first and second communication channels. The shared photodiode also converts received optical signals into electrical signals for processing by one of the high data rate transceiver logic and the low data rate transceiver logic. A shared laser module configured to be driven by the high data rate transceiver logic and the low data rate transceiver logic is also included in the network element to output an optical signal over a fiber optic cable via one of the first and second communication channels.
Abstract:
A phased-array antenna assembly includes an antenna board stack, a radome configured to cover the antenna board stack, and a casing configured to support the antenna board stack. The antenna board stack includes a central core, a bottom antenna unit defining a bottom thickness between a bottom surface of the central core and a bottom end of the antenna board stack, and a top antenna unit defining a top thickness between a top surface of the central core and the top end of the antenna board stack that is substantially equal to the bottom thickness. The bottom antenna unit includes two spaced apart bottom metal layers each associated with a different distance from the axis of symmetry. The top antenna unit includes two spaced apart top metal layers each associated with a corresponding one of the distances from the axis of symmetry associated with the bottom metal layers.
Abstract:
An aligning apparatus for mounting cards into a housing space is provided. The aligning apparatus includes a first line card having a mating portion and a card guide assembly coupled to the first line card. The mating portion is configured to mate with a backplane of the housing space. The card guide assembly varies from a first height at a first portion to a second height at a second portion. The varying heights correspond to an arrangement of components on a neighboring card. The first and second portions are configured to guide directional movement of the first line card in relation to one or more components on the neighboring card during insertion of the first line card into the housing space. In this regard, the first line card is guided past the one or more components on the neighboring card as the mating portion of the first line card is moved toward the backplane.
Abstract:
This disclosure provides systems, methods, and apparatus for providing a crosspoint switch used in an optical fiber data network. The crosspoint switch can switch optical signals received from any of a plurality of input optical fibers to any one of a plurality of output optical fibers. The crosspoint switch converts the optical signals received from the input optical fibers into electrical signals, switches the electrical signals, and converts the switched electrical signals back into optical signals before transmitting them over the output optical fibers. A micro-electromechanical systems (MEMS) electrical switch array is utilized to switch the electrical signals. The MEMS electrical switch array includes MEMS switching elements that allow for high frequency and high bandwidth operation of the crosspoint switch. The crosspoint switch can utilize circuit switching methodology for switching decisions.