Abstract:
A phased array antenna system includes an array of antennas having first antenna and second antennas disposed equidistantly from a third antenna. The first antenna is associated with a first gain and a first phase and the second antenna is associated with a second gain and a second phase. The first antenna receives a first reference signal corresponding to a calibration reference signal transmitted by the third antenna, and the second antenna receives a second reference signal corresponding to the calibration reference signal transmitted by the third antenna. The second receiver module is configured to adjust the second gain and the second phase associated with the second antenna to match the first gain and the first phase associated with the first antenna by comparing the first reference signal received by the first antenna with the second reference signal received by the second antenna.
Abstract:
A phased-array antenna assembly includes an antenna board stack, a radome configured to cover the antenna board stack, and a casing configured to support the antenna board stack. The antenna board stack includes a central core, a bottom antenna unit defining a bottom thickness between a bottom surface of the central core and a bottom end of the antenna board stack, and a top antenna unit defining a top thickness between a top surface of the central core and the top end of the antenna board stack that is substantially equal to the bottom thickness. The bottom antenna unit includes two spaced apart bottom metal layers each associated with a different distance from the axis of symmetry. The top antenna unit includes two spaced apart top metal layers each associated with a corresponding one of the distances from the axis of symmetry associated with the bottom metal layers.
Abstract:
A method for active interference avoidance in unlicensed bands. The method includes receiving an electromagnetic signal having a transmission frequency, a transmission period, and an antenna pattern from a phased array antenna. The method also includes switching the transmission frequency from a first transmission frequency with a first signal to interference and noise ratio to a second transmission frequency with a second signal to interference and noise ratio, wherein the second signal to interference and noise ratio is lower than the first signal to interference and noise ratio. The method further includes selecting a transmission period based on a time when a least amount of signal noise is present on the transmission frequency and selecting an antenna pattern that reduces interference on the selected transmission frequency.
Abstract:
A phased array antenna system includes an array of antennas having first antenna and second antennas disposed equidistantly from a third antenna. The first antenna is associated with a first gain and a first phase and the second antenna is associated with a second gain and a second phase. The first antenna receives a first reference signal corresponding to a calibration reference signal transmitted by the third antenna, and the second antenna receives a second reference signal corresponding to the calibration reference signal transmitted by the third antenna. The second receiver module is configured to adjust the second gain and the second phase associated with the second antenna to match the first gain and the first phase associated with the first antenna by comparing the first reference signal received by the first antenna with the second reference signal received by the second antenna.
Abstract:
A phased-array antenna assembly includes an antenna board stack, a radome configured to cover the antenna board stack, and a casing configured to support the antenna board stack. The antenna board stack includes a central core, a bottom antenna unit defining a bottom thickness between a bottom surface of the central core and a bottom end of the antenna board stack, and a top antenna unit defining a top thickness between a top surface of the central core and the top end of the antenna board stack that is substantially equal to the bottom thickness. The bottom antenna unit includes two spaced apart bottom metal layers each associated with a different distance from the axis of symmetry. The top antenna unit includes two spaced apart top metal layers each associated with a corresponding one of the distances from the axis of symmetry associated with the bottom metal layers.
Abstract:
The method includes selecting, by control hardware, a first output from a phased locked loop, sending, by the control hardware, the first output from the phased locked loop to a first device under test and a second device under test, and adjusting, by the control hardware, a first phase rotator connected to the first device under test to a first rotator phase value of zero; determining a collection of phase detector values of a phase detector connected to the second device under test by adjusting a second phase rotator connected to the second device under test to sweep through a phase range and measuring the phase detector values of the phase detector; determining a phase detector gain of the phase detector by averaging the collection of phase detector values and storing, by the control hardware, the phase detector gain in memory hardware.