-
公开(公告)号:US20220075944A1
公开(公告)日:2022-03-10
申请号:US17432259
申请日:2020-02-19
Applicant: Google LLC
Inventor: Nan Du , Linh Trans , Yu-hui Chen , Izhak Shafran
IPC: G06F40/284 , G06F40/295 , G06N3/04
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for extracting entities from conversation transcript data. One of the methods includes obtaining a conversation transcript sequence, processing the conversation transcript sequence using a span detection neural network configured to generate a set of text token spans; and for each text token span: processing a span representation using an entity name neural network to generate an entity name probability distribution over a set of entity names, each probability in the entity name probability distribution representing a likelihood that a corresponding entity name is a name of the entity referenced by the text token span; and processing the span representation using an entity status neural network to generate an entity status probability distribution over a set of entity statuses.
-
公开(公告)号:US20210065066A1
公开(公告)日:2021-03-04
申请号:US17008338
申请日:2020-08-31
Applicant: Google LLC
Inventor: Yuan Xue , Dengyong Zhou , Nan Du , Andrew Mingbo Dai , Zhen Xu , Kun Zhang , Yingwei Cui
Abstract: A deep state space generative model is augmented with intervention prediction. The state space model provides a principled way to capture the interactions among observations, interventions, critical event occurrences, true states, and associated uncertainty. The state space model can include a discrete-time hazard rate model that provides flexible fitting of general survival time distributions. The state space model can output a joint prediction of event risk, observation and intervention trajectories based on patterns in temporal progressions, and correlations between past measurements and interventions.
-
公开(公告)号:US20240378427A1
公开(公告)日:2024-11-14
申请号:US18661499
申请日:2024-05-10
Applicant: Google LLC
Inventor: Slav Petrov , Yonghui Wu , Andrew M. Dai , David Richard So , Dmitry Lepikhin , Erica Ann Moreira , Gaurav Mishra , Jonathan Hudson Clark , Maxim Krikun , Melvin Jose Johnson Premkumar , Nan Du , Orhan Firat , Rohan Anil , Siamak Shakeri , Xavier Garcia , Yanping Huang , Yong Cheng , Yuanzhong Xu , Yujing Zhang , Zachary Alexander Nado , Eric Jun Jie Ni , Kefan Xiao , Vladimir Feinberg , Jin Young Sohn , Aurko Roy
IPC: G06N3/0475 , G06F40/284
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a neural network to perform any one or more of a variety of machine learning tasks. For example, the neural network can be configured as a generative neural network, e.g., an autoregressive generative neural network.
-
公开(公告)号:US20240112027A1
公开(公告)日:2024-04-04
申请号:US18477546
申请日:2023-09-28
Applicant: Google LLC
Inventor: Yanqi Zhou , Yanping Huang , Yifeng Lu , Andrew M. Dai , Siamak Shakeri , Zhifeng Chen , James Laudon , Quoc V. Le , Da Huang , Nan Du , David Richard So , Daiyi Peng , Yingwei Cui , Jeffrey Adgate Dean , Chang Lan
IPC: G06N3/08
CPC classification number: G06N3/08
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for performing neural architecture search for machine learning models. In one aspect, a method comprises receiving training data for a machine learning, generating a plurality of candidate neural networks for performing the machine learning task, wherein each candidate neural network comprises a plurality of instances of a layer block composed of a plurality of layers, for each candidate neural network, selecting a respective type for each of the plurality of layers from a set of layer types that comprises, training the candidate neural network and evaluating performance scores for the trained candidate neural networks as applied to the machine learning task, and determining a final neural network for performing the machine learning task based at least on the performance scores for the candidate neural networks.
-
公开(公告)号:US12216999B2
公开(公告)日:2025-02-04
申请号:US17432259
申请日:2020-02-19
Applicant: Google LLC
Inventor: Nan Du , Linh Mai Tran , Yu-Hui Chen , Izhak Shafran
IPC: G06F40/279 , G06F40/284 , G06F40/295 , G06N3/045
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for extracting entities from conversation transcript data. One of the methods includes obtaining a conversation transcript sequence, processing the conversation transcript sequence using a span detection neural network configured to generate a set of text token spans; and for each text token span: processing a span representation using an entity name neural network to generate an entity name probability distribution over a set of entity names, each probability in the entity name probability distribution representing a likelihood that a corresponding entity name is a name of the entity referenced by the text token span; and processing the span representation using an entity status neural network to generate an entity status probability distribution over a set of entity statuses.
-
6.
公开(公告)号:US20240303464A1
公开(公告)日:2024-09-12
申请号:US18598876
申请日:2024-03-07
Applicant: Google LLC
Inventor: Nan Du , Tao Wang , Yanqi Zhou , Tao Lei , Yuanzhong Xu , Andrew Mingbo Dai , Zhifeng Chen , Dewen Zeng , Yingwei Cui
Abstract: A method includes providing a first set of data objects to a first skip router of a neural network (NN). The NN includes a first NN layer and a second NN layer. The first set of data objects is subdivided into a first set of skip objects and a first set of non-skip objects based on a first skip logic implemented by the first skip router and a first context of each data object in the first set of data objects. A first set of processed objects is generated based on the first set of non-skip objects and a first layer logic implemented by the first NN layer. Predictions are generated based on a second set of data objects and a second layer logic implemented by the second NN layer. The second set of data objects includes the first set of processed objects and the first set of skip objects.
-
公开(公告)号:US20250131251A1
公开(公告)日:2025-04-24
申请号:US18834070
申请日:2023-01-30
Applicant: Google LLC
Inventor: Hanxiao Liu , Quoc V. Le , Yanqi Zhou , Tao Lei , Yuzhe Zhao , Yanping Huang , Nan Du , Zhifeng Chen , Andrew M. Dai , James Laudon
IPC: G06N3/048
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for performing a machine learning task on a network input to generate a network output. In one aspect, one of the systems includes a neural network configured to perform the machine learning task, the neural network including one or more expert neural network blocks that each include router that performs expert-choice routing between multiple expert neural networks.
-
公开(公告)号:US12217144B2
公开(公告)日:2025-02-04
申请号:US17008338
申请日:2020-08-31
Applicant: Google LLC
Inventor: Yuan Xue , Dengyong Zhou , Nan Du , Andrew Mingbo Dai , Zhen Xu , Kun Zhang , Yingwei Cui
Abstract: A deep state space generative model is augmented with intervention prediction. The state space model provides a principled way to capture the interactions among observations, interventions, critical event occurrences, true states, and associated uncertainty. The state space model can include a discrete-time hazard rate model that provides flexible fitting of general survival time distributions. The state space model can output a joint prediction of event risk, observation and intervention trajectories based on patterns in temporal progressions, and correlations between past measurements and interventions.
-
公开(公告)号:US20240378441A1
公开(公告)日:2024-11-14
申请号:US18661447
申请日:2024-05-10
Applicant: Google LLC
Inventor: Slav Petrov , Yonghui Wu , Andrew M. Dai , David Richard So , Dmitry Lepikhin , Erica Ann Moreira , Gaurav Mishra , Jonathan Hudson Clark , Maxim Krikun , Melvin Jose Johnson Premkumar , Nan Du , Orhan Firat , Rohan Anil , Siamak Shakeri , Xavier Garcia , Yanping Huang , Yong Cheng , Yuanzhong Xu , Yujing Zhang , Zachary Alexander Nado , Eric Jun Jie Ni , Kefan Xiao , Vladimir Feinberg , Jin Young Sohn , Aurko Roy
IPC: G06N3/08
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a neural network to perform any one or more of a variety of machine learning tasks. For example, the neural network can be configured as a generative neural network, e.g., an autoregressive generative neural network.
-
-
-
-
-
-
-
-