Computational graph optimization
    1.
    发明授权

    公开(公告)号:US12205038B2

    公开(公告)日:2025-01-21

    申请号:US18321691

    申请日:2023-05-22

    Applicant: Google LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for optimizing the execution of the operations of a neural network. One of the methods includes obtaining data representing a graph characterizing a plurality of operations of a neural network, wherein each node of the graph characterizes an operation of the neural network and each edge of the graph characterizes data dependency between the operations; processing the data representing the graph using a graph embedding neural network to generate an embedding of the graph; and processing the embedding of the graph using a policy neural network to generate a task output, wherein the task output comprises, for each of the plurality of operations of the neural network, a respective decision for a particular optimization task.

    LEARNED GRAPH OPTIMIZATIONS FOR COMPILERS
    2.
    发明公开

    公开(公告)号:US20230176840A1

    公开(公告)日:2023-06-08

    申请号:US17921933

    申请日:2021-06-07

    Applicant: Google LLC

    CPC classification number: G06F8/443

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for compiler optimizations using a compiler optimization network. One of the methods includes receiving an input program, wherein the input program defines a graph of operation modules, wherein each node in the graph is a respective operation module, and each edge between nodes in the graph represents one operation module receiving the output generated by another operation module. The input program is processed by a compiler optimization network comprising a graph-embedding network that is configured to encode operation features and operation dependencies of the operation modules of the input program into a graph embedding representation and a policy network that is configured to generate an optimization action for each of one or more nodes encoded in the graph embedding representation. The compiler optimization network generates an output optimization plan comprising one or more optimization actions for the input program.

    NEURAL ARCHITECTURE AND HARDWARE ACCELERATOR SEARCH

    公开(公告)号:US20240005129A1

    公开(公告)日:2024-01-04

    申请号:US18029849

    申请日:2021-10-01

    Applicant: Google LLC

    CPC classification number: G06N3/045 G06N3/092 G06N3/0464 G06N3/044 G06N3/063

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for jointly determining neural network architectures and hardware accelerator architectures. In one aspect, a method includes: generating, using a controller policy, a batch of one or more output sequences, each output sequence in the batch defining a respective architecture of a child neural network and a respective architecture of a hardware accelerator; for each output sequence in the batch: training a respective instance of the child neural network having the architecture defined by the output sequence; evaluating a network performance of the trained instance of the child neural; and evaluating an accelerator performance of a respective instance of the hardware accelerator having the architecture defined by the output sequence to determine an accelerator performance metric for the instance of the hardware accelerator; and using the network performance metrics and the accelerator performance metrics to adjust the controller policy.

    Computational graph optimization
    5.
    发明授权

    公开(公告)号:US11657289B2

    公开(公告)日:2023-05-23

    申请号:US16840191

    申请日:2020-04-03

    Applicant: Google LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for optimizing the execution of the operations of a neural network. One of the methods includes obtaining data representing a graph characterizing a plurality of operations of a neural network, wherein each node of the graph characterizes an operation of the neural network and each edge of the graph characterizes data dependency between the operations; processing the data representing the graph using a graph embedding neural network to generate an embedding of the graph; and processing the embedding of the graph using a policy neural network to generate a task output, wherein the task output comprises, for each of the plurality of operations of the neural network, a respective decision for a particular optimization task.

    COMPUTATIONAL GRAPH OPTIMIZATION
    10.
    发明申请

    公开(公告)号:US20210248445A1

    公开(公告)日:2021-08-12

    申请号:US16840191

    申请日:2020-04-03

    Applicant: Google LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for optimizing the execution of the operations of a neural network. One of the methods includes obtaining data representing a graph characterizing a plurality of operations of a neural network, wherein each node of the graph characterizes an operation of the neural network and each edge of the graph characterizes data dependency between the operations; processing the data representing the graph using a graph embedding neural network to generate an embedding of the graph; and processing the embedding of the graph using a policy neural network to generate a task output, wherein the task output comprises, for each of the plurality of operations of the neural network, a respective decision for a particular optimization task.

Patent Agency Ranking