Abstract:
A toolholder with a controllable critical angle, such as a lead, trailing, rake or clearance angles, includes a tool spindle for retaining the toolholder in a tool rest of a machine tool. The machine tool includes at least one linear axis, for example, three mutually perpendicular axes, a rotary axis and a rotation axis. The rotary axis and/or rotation axis is controllable to move to a specified position in synchronization with a movement of one of the linear axes. An adaptor supports a cutting tool that is retained in the adaptor by a clamp. The cutting tool defines a critical angle, such as a lead angle, a trailing angle, a rake angle and a flank clearance angle, wherein the critical angle is corrected as a vector of movement of at least one of the linear axis is changed. In addition, the cutting tool can be positioned on opposite side of a centerline of rotation of the workpiece to effectively double the life of the cutting tool. A method of controlling a toolholder is also disclosed.
Abstract:
A cutting insert rotated about its axis may be utilized during a metalworking operation and applied against the rotating workpiece to enhance tool performance. A method, including an assembly with a rotatable insert mounted to a toolholder may be utilized to achieve this result.
Abstract:
A toolholder (50) with a controllable critical angle, such as a lead, trailing, rake or clearance angles, includes a tool spindle (42a) for retaining the toolholder in a tool rest (42) of a machine tool. The machine tool (10) includes at least one linear axis, for example, three mutually perpendicular axes, a rotary axis and a rotation axis. The rotary axis and/or rotation axis is controllable to move to a specified position in synchronization with a movement of one of the linear axes. An adaptor (54) supports a cutting tool (56) that is retained in the adaptor by a clamp (58). The cutting tool (56) defines a critical angle, such as a lead angle, a trailing angle, a rake angle and a flank clearance angle, wherein the critical angle is corrected as a vector of movement of at least one of the linear axis is changed. In addition, the cutting tool (56) can be positioned on opposite side of a centerline of rotation of the workpiece to effectively double the life of the cutting tool. A method of controlling a toolholder (50) is also disclosed.
Abstract:
A cutting insert rotated about its axis may be utilized during a metalworking operation and applied against the rotating workpiece to enhance tool performance. A method, including an assembly with a rotatable insert mounted to a toolholder may be utilized to achieve this result.
Abstract:
A toolholder with a controllable critical angle, such as a lead, trailing, rake or clearance angles, includes a tool spindle for retaining the toolholder in a tool rest of a machine tool. The machine tool includes at least one linear axis, for example, three mutually perpendicular axes, a rotary axis and a rotation axis. The rotary axis and/or rotation axis is controllable to move to a specified position in synchronization with a movement of one of the linear axes. An adaptor supports a cutting tool that is retained in the adaptor by a clamp. The cutting tool defines a critical angle, such as a lead angle, a trailing angle, a rake angle and a flank clearance angle, wherein the critical angle is corrected as a vector of movement of at least one of the linear axis is changed. In addition, the cutting tool can be positioned on opposite side of a centerline of rotation of the workpiece to effectively double the life of the cutting tool. A method of controlling a toolholder is also disclosed.
Abstract:
A milling cutter (10) comprises a cutter body (12) having at least two operational annular rings (13, 14). An outer ring (13) is provided for rough milling and includes a plurality of cutting inserts spaced about the periphery of the cutter body. Positioned radially inward of the outer ring (13) is at least one ring (14) comprises a coating of abrasive material. As a result, a workpiece can be both tough and finish milled by a single milling cutter (10) with the rough cutting inserts (18) and the abrasive material.
Abstract:
A milling cutter (10) comprises a cutter body (12) having at least two operational annular rings (13, 14). An outer ring (13) is provided for rough milling and includes a plurality of cutting inserts spaced about the periphery of the cutter body. Positioned radially inward of the outer ring (13) is at least one ring (14) comprises a coating of abrasive material. As a result, a workpiece can be both tough and finish milled by a single milling cutter (10) with the rough cutting inserts (18) and the abrasive material.
Abstract:
A cutting insert rotated about its axis may be utilized during a metalworking operation and applied against the rotating workpiece to enhance tool performance. The cutting insert is secured within a toolholder having features to secure the insert but at the same time make for efficient removal of the insert from the toolholder.
Abstract:
A cutting insert rotated about its axis may be utilized during a metalworking operation and applied against the rotating workpiece to enhance tool performance. A method, including an assembly with a rotatable insert mounted to a toolholder may be utilized to achieve this result.
Abstract:
A cutting insert rotated about its axis may be utilized during a metalworking operation and applied against the rotating workpiece to enhance tool performance. The cutting insert is secured within a toolholder having features to secure the insert but at the same time make for efficient removal of the insert from the toolholder.