摘要:
An adaptive energy absorption system for a vehicle seat is disclosed, utilizing an adaptive energy absorber or variable profile energy absorber (VPEA) for mitigating occupant injury due to extreme vehicle movement (e.g., during a vehicle shock event), and/or for mitigating vibration experienced by an occupant of the vehicle seat during normal vehicle operating conditions. Various configurations of dual-goal energy absorption apparatuses using both VPEA and fixed load energy absorbers (FLEAs) that enable both shock mitigation and vibration isolation are disclosed. A semi-active control absorption system, comprising a VPEA and FPEA configured to work in series, is also disclosed.
摘要:
An adaptive energy absorption system for a vehicle seat is disclosed, utilizing an adaptive energy absorber or variable profile energy absorber (VPEA) for mitigating occupant injury due to extreme vehicle movement (e.g., during a vehicle shock event), and/or for mitigating vibration experienced by an occupant of the vehicle seat during normal vehicle operating conditions. Various configurations of dual-goal energy absorption apparatuses using both VPEA and fixed load energy absorbers (FLEAs) that enable both shock mitigation and vibration isolation are disclosed. A semi-active control absorption system, comprising a VPEA and FPEA configured to work in series, is also disclosed.
摘要:
A compact and failsafe magnetorheological energy absorber design including both a light weight piston (LWP) embodiment in which linear motion is subjected to a linear damping force, and a light weight rotary vane (LWRV)embodiment in which linear motion is converted into rotary motion and is subjected to a rotary damping force. Both embodiments allow increased damper stroke within a compact mechanical profile. A new lightweight Magnetorheological energy attenuation system (LMEAS) for a vehicle seat is also disclosed using the new LMRW MREA.
摘要:
An adaptive energy absorption system for a vehicle seat that functions in dual-modes, including a primary mode during severe (shock event) operation and a secondary mode during normal (non-shock event) operation. When operating in primary mode, the present system automatically adjusts a VPEA in real-time to keep loads transmitted to the occupant's body below acceptable injury threshold levels, and can recover to perform said function for multiple shock events. When operating in secondary mode the system reduces vehicle vibration transmitted to the occupant, thereby reducing fatigue and increasing situational awareness.
摘要:
A compact and failsafe magnetorheological energy absorber design including both a light weight piston (LWP) embodiment in which linear motion is subjected to a linear damping force, and a light weight rotary vane (LWRV) embodiment in which linear motion is converted into rotary motion and is subjected to a rotary damping force. Both embodiments allow increased damper stroke within a compact mechanical profile. A new lightweight Magnetorheological energy attenuation system (LMEAS) for a vehicle seat is also disclosed using the new LMRW MREA.
摘要:
An adaptive energy absorption system for a vehicle seat that functions in dual-modes, including a primary mode during severe (shock event) operation and a secondary mode during normal (non-shock event) operation. When operating in primary mode, the present system automatically adjusts a VPEA in real-time to keep loads transmitted to the occupant's body below acceptable injury threshold levels, and can recover to perform said function for multiple shock events. When operating in secondary mode the system reduces vehicle vibration transmitted to the occupant, thereby reducing fatigue and increasing situational awareness.
摘要:
A magnetorheological fluid damping system includes a hydraulic cylinder, a piston head, a piston rod, and a porous valve. The hydraulic cylinder is configured for disposing magnetorheological fluid therein. The piston head is disposed within the hydraulic cylinder and has first and second sides defining first and second chambers within the hydraulic cylinder. The piston head is configured to be in sliding engagement with the hydraulic cylinder. The piston rod is connected to the piston head. The porous valve includes a magnetorheological fluid pathway, has first and second fluid connections, and is configured to dampen the flow of the magnetorheological fluid between the first and second fluid connections in accordance with a magnetic field. The first fluid connection is fluidly connected to the first chamber and the second fluid connection is fluidly connected to the second chamber. The magnetorheological fluid pathway at least partially directs magnetorheological fluid flow through a porous media.
摘要:
A method of designing a magnetorheological (MR) fluid energy absorbing damper is provided that uses hydromechanical analysis with lumped parameters to allow a determination as to whether a potential damper design will provide predetermined characteristics, such as a desired dynamic force range and maximum piston velocity, with a selected MR fluid and yield stress and preferably meeting predetermined geometric limitations.
摘要:
An energy absorbing device is provided that includes a damper assembly having inner and outer concentric tubes and a piston movable within the inner tube. The damper assembly is configured to form bi-fold valve-type cavities to operatively connect an inner chamber of the inner tube with an outer chamber formed between the inner and outer tubes. A magnetorheological fluid fills the chambers and the bi-fold valve-type cavities. The magnetorheological fluid preferably contains coated magnetic particles at about 10 to 60 percent by volume. Electrical coils adjacent the bi-fold valves are selectively energizable to such that the energy absorbing device provides a tunable damping force, preferably over the entire range of velocities of the piston, especially in automotive applications.
摘要:
A method of designing a magnetorheological (MR) fluid energy absorbing damper is provided that uses hydromechanical analysis with lumped parameters to allow a determination as to whether a potential damper design will provide predetermined characteristics, such as a desired dynamic force range and maximum piston velocity, with a selected MR fluid and yield stress and preferably meeting predetermined geometric limitations.