摘要:
A capacitively-loaded loop antenna and corresponding radiation method have been provided. The antenna comprises a transformer loop having a balanced feed interface and a capacitively-loaded loop radiator. In one aspect, the capacitively-loaded loop radiator is a balanced radiator. In another, the transformed loop and capacitively-loaded loop radiator are physically connected. That is, the transformer loop and the capacitively-loaded loop radiator have a portion shared by both of the loop perimeters. Alternately, the loops are physically independent of each other. In one aspect, the perimeters have a rectangular shape. Other shapes such as round or oval are also possible. In another aspect, the planes formed by the transformer and capacitively-loaded loop radiator can be coplanar or non-planar, while both loops are orthogonal to a common magnetic near-field generated by the transformed loop. The radiator has a capacitively-loaded side, or capacitively loaded perimeter section, depending on the shape of the perimeter.
摘要:
A cellular modem card that conforms to a PCMCIA standard includes a balanced antenna. The balanced antenna minimizes susceptibility to limited available ground plane and limited ground connections between the modem card and a host device, such as laptop computer. The balanced antenna may be a dipole antenna, loop antenna, capacitively loaded antenna, or any other suitable balanced antenna.
摘要:
A capacitively-loaded loop antenna and corresponding radiation method have been provided. The antenna comprises a transformer loop having a balanced feed interface and a capacitively-loaded loop radiator. In one aspect, the capacitively-loaded loop radiator is a balanced radiator. In another, the transformed loop and capacitively-loaded loop radiator are physically connected. That is, the transformer loop and the capacitively-loaded loop radiator have a portion shared by both of the loop perimeters. Alternately, the loops are physically independent of each other. In one aspect, the perimeters have a rectangular shape. Other shapes such as round or oval are also possible. In another aspect, the planes formed by the transformer and capacitively-loaded loop radiator can be coplanar or non-planar, while both loops are orthogonal to a common magnetic near-field generated by the transformed loop. The radiator has a capacitively-loaded side, or capacitively loaded perimeter section, depending on the shape of the perimeter.
摘要:
A cellular modem card that conforms to a PCMCIA standard includes a balanced antenna. The balanced antenna minimizes susceptibility to limited available ground plane and limited ground connections between the modem card and a host device, such as laptop computer. The balanced antenna may be a dipole antenna, loop antenna, capacitively loaded antenna, or any other suitable balanced antenna.
摘要:
A capacitively-loaded loop antenna and corresponding radiation method have been provided. The antenna comprises a transformer loop having a balanced feed interface and a capacitively-loaded loop radiator. In one aspect, the capacitively-loaded loop radiator is a balanced radiator. In another, the transformed loop and capacitively-loaded loop radiator are physically connected. That is, the transformer loop and the capacitively-loaded loop radiator have a portion shared by both of the loop perimeters. Alternately, the loops are physically independent of each other. In one aspect, the perimeters have a rectangular shape. Other shapes such as round or oval are also possible. In another aspect, the planes formed by the transformer and capacitively-loaded loop radiator can be coplanar or non-planar, while both loops are orthogonal to a common magnetic near-field generated by the transformed loop. The radiator has a capacitively-loaded side, or capacitively loaded perimeter section, depending on the shape of the perimeter.
摘要:
A capacitively-loaded loop antenna and corresponding radiation method have been provided. The antenna comprises a transformer loop having a balanced feed interface and a capacitively-loaded loop radiator. In one aspect, the capacitively-loaded loop radiator is a balanced radiator. In another, the transformed loop and capacitively-loaded loop radiator are physically connected. That is, the transformer loop and the capacitively-loaded loop radiator have a portion shared by both of the loop perimeters. Alternately, the loops are physically independent of each other. In one aspect, the perimeters have a rectangular shape. Other shapes such as round or oval are also possible. In another aspect, the planes formed by the transformer and capacitively-loaded loop radiator can be coplanar or non-planar, while both loops are orthogonal to a common magnetic near-field generated by the transformed loop. The radiator has a capacitively-loaded side, or capacitively loaded perimeter section, depending on the shape of the perimeter.
摘要:
A multiple band capacitively-loaded magnetic dipole antenna includes a plurality of magnetic dipole radiators connected to a transformer loop where the magnetic dipole radiators include at least one capacitively-loaded magnetic dipole radiator. The transformer loop has a balanced feed interface and includes a side that provides a transformer interface of quasi loops formed by the plurality of magnetic dipole radiators. Each quasi loop has a configuration and length to maximize antenna performance within a different frequency band. The at least one capacitively-loaded magnetic dipole radiator may be formed with a meander line structure and may include an electric field bridge such as a dielectric gap, lumped element, circuit board surface-mounted, ferroelectric tunable, or a microelectromechanical system (MEMS) capacitor.
摘要:
A wireless communication device is provided with a multipart case, having electrical interfaces that encourage the flow of radiation frequency ground current between case sections. The multipart case has a first planar groundplane section and a second planar groundplane section. For example, the multipart case design may be a slider, double slider, multiple hinge, flip, or swivel case. The second planar groundplane is substantially coplanar with the first groundplane in a case open position, and substantially bi-planar with the first groundplane in a case closed position. The wireless device also includes an antenna located adjacent the second groundplane section first end. A first and a second interface electrically connect the first groundplane section to the second groundplane section second end (the end opposite the antenna).
摘要:
A wireless communication device is provided with a multipart case, having electrical interfaces that encourage the flow of radiation frequency ground current between case sections. The multipart case has a first planar groundplane section and a second planar groundplane section. For example, the multipart case design may be a slider, double slider, multiple hinge, flip, or swivel case. The second planar groundplane is substantially coplanar with the first groundplane in a case open position, and substantially bi-planar with the first groundplane in a case closed position. The wireless device also includes an antenna located adjacent the second groundplane section first end. A first and a second interface electrically connect the first groundplane section to the second groundplane section second end (the end opposite the antenna).
摘要:
A system and method is provided for full-duplex antenna impedance matching. The method comprises: effectively resonating a first antenna at a frequency selectable first channel in a first frequency band; generating a first antenna impedance at the first channel frequency; effectively resonating a second antenna at a frequency selectable second channel in the first frequency band; generating a second antenna impedance at the second channel frequency; supplying a first conjugate impedance match at the first channel frequency; and, supplying a second conjugate impedance match at the second channel frequency. For example, the first antenna may be used for transmission, while the second antenna is used for received communications. The antennas effectively resonant in response to: supplying frequency selectable conjugate impedance matches to the antennas; generating frequency selectable antenna impedances; and/or selecting the frequency of antenna resonance.