Abstract:
Aircraft instrumentation systems and controllers are provided. An aircraft instrumentation system includes a display and a controller. The controller is configured to monitor an electronic circuit breaker (ECB) status of each of a plurality of aircraft systems. The controller is further configured to generate, for each of the plurality of aircraft systems, a visual indicator that indicates the ECB status. The controller is yet further configured to generate an image arrangement that includes the visual indicator for each of the plurality of aircraft systems and to generate a signal that causes a display to present the image arrangement.
Abstract:
Aircraft instrumentation systems and controllers are provided. An aircraft instrumentation system includes a display and a controller. The controller is configured to monitor an electronic circuit breaker (ECB) status of each of a plurality of aircraft systems. The controller is further configured to generate, for each of the plurality of aircraft systems, a visual indicator that indicates the ECB status. The controller is yet further configured to generate an image arrangement that includes the visual indicator for each of the plurality of aircraft systems and to generate a signal that causes a display to present the image arrangement.
Abstract:
A display system is disclosed herein. The display system includes, but is not limited to, a rear projection screen. The display system further includes, but is not limited to, a first projector arranged to project a first image on the rear projection screen. The display system further includes a second projector arranged to project a second image on the rear projection screen. The display system still further includes a processor that is operatively coupled with the first projector and the second projector. The processor is configured to control the first projector to project the first image and to control the second projector to project the second image, and is further configured to align the second image with the first image in an overlaying manner so as to create the appearance of a single image, a portion of the second image being substantially identical to a portion of the first image.
Abstract:
The disclosed embodiments relate to methods and systems for avoiding a collision between an aircraft on the ground and an obstacle using a three-dimensional visual indication of the area or plane of winglets on the wingtips of the aircraft. The method includes receiving a video image from a camera positioned in one of the winglets, the video image representing a field of view through which the winglet of the aircraft will pass along a present heading of the aircraft. Next a processor determines a three-dimensional area or plane within the field of view through which the winglet of the aircraft will pass. An overlay is displayed within the field of view to assist the pilot in avoiding collisions with obstacles
Abstract:
The disclosed embodiments relate to methods and systems for avoiding a collision between an aircraft on the ground and an obstacle using a three-dimensional visual indication of the area or plane of winglets on the wingtips of the aircraft. The method includes receiving a video image from a camera positioned in one of the winglets, the video image representing a field of view through which the winglet of the aircraft will pass along a present heading of the aircraft. Next a processor determines a three-dimensional area or plane within the field of view through which the winglet of the aircraft will pass. An overlay is displayed within the field of view to assist the pilot in avoiding collisions with obstacles within the field of view.
Abstract:
A system for providing visual feedback in an aircraft having an actuatable component includes a controller providing automatic control of the actuatable component in an automatic mode and permitting manual control of the actuatable component in a manual mode. A handle assembly is in communication with the actuatable component to provide manual control of the actuatable component in the manual mode. The system also includes a light panel integrated with the handle assembly, in communication with said controller, and configured to selectively illuminate to inform a user of the mode of the actuatable component.
Abstract:
A system is provided that includes a detachable mounting apparatus. The detachable mounting apparatus is configured to be secured on an aircraft. The detachable mounting apparatus includes a detection system and a warning system. The detection system can detect objects in proximity to the aircraft and generate a detection signal when an object is detected in proximity to the aircraft. The warning system can generate at least one alarm signal that is perceptible outside the aircraft.
Abstract:
The disclosed embodiments relate to methods and systems for avoiding a collision between an aircraft on the ground and an obstacle using a three-dimensional visual indication of the area or plane of winglets on the wingtips of the aircraft. The method includes receiving a video image from a camera positioned in one of the winglets, the video image representing a field of view through which the winglet of the aircraft will pass along a present heading of the aircraft. Next a processor determines a three-dimensional area or plane within the field of view through which the winglet of the aircraft will pass. An overlay is displayed within the field of view to assist the pilot in avoiding collisions with obstacles.
Abstract:
Aircraft instrumentation systems and controllers are provided. An aircraft instrumentation system includes a display and a controller. The controller is configured to monitor an electronic circuit breaker (ECB) status of each of a plurality of aircraft systems. The controller is further configured to generate, for each of the plurality of aircraft systems, a visual indicator that indicates the ECB status. The controller is yet further configured to generate an image arrangement that includes the visual indicator for each of the plurality of aircraft systems and to generate a signal that causes a display to present the image arrangement.
Abstract:
A system for providing visual feedback in an aircraft having an actuatable component includes a controller providing automatic control of the actuatable component in an automatic mode and permitting manual control of the actuatable component in a manual mode. A handle assembly is in communication with the actuatable component to provide manual control of the actuatable component in the manual mode. The system also includes a light panel integrated with the handle assembly, in communication with said controller, and configured to selectively illuminate to inform a user of the mode of the actuatable component.