摘要:
A thermal oxidation tester is shown for determining thermal stability of a fluid, particularly hydrocarbons when subjected to elevated temperatures. The tendency of the heated fluid to oxidize and (1) form deposits on a surface of a heater tube and (2) form solids therein, are both measured at a given flow rate, temperature and time. The measured results are used to determine whether a fluid sample passes or fails the test. Results of measurements are recorded in a memory device on one end of the heater tube on which the deposits were made.
摘要:
A thermal oxidation tester is shown for determining thermal stability of a fluid, particularly hydrocarbons when subjected to elevated temperatures. The tendency of the heated fluid to oxidize and (1) form deposits on a surface of a heater tube and (2) form solids therein, are both measured at a given flow rate, temperature and time. The measured results are used to determine whether a fluid sample passes or fails the test. Results of measurements are recorded in a memory device on one end of the heater tube on which the deposits were made.
摘要:
A thermal oxidation tester is shown for determining thermal stability of a fluid, particularly hydrocarbons when subjected to elevated temperatures. The tendency of the heated fluid to oxidize and (1) form deposits on a surface of a heater tube and (2) form solids therein, are both measured at a given flow rate, temperature and time. The measured results are used to determine whether a fluid sample passes or fails the test. Sample flow rate is important in the jet fuel thermal oxidation test. Current practice requires manual drop counting or flow confirmation with the use of volumetric glassware. An apparatus is described to precisely measure the flow rate and automatically perform flow rate check using a drip rate method and/or volumetric method.
摘要:
A thermal oxidation tester is shown for determining thermal stability of a fluid, particularly hydrocarbons when subjected to elevated temperatures. The tendency of the heated fluid to oxidize and (1) form deposits on a surface of a heater tube and (2) form solids therein, are both measured at a given flow rate, temperature and time. The measured results are used to determine whether a fluid sample passes or fails the test. Sample flow rate is important in the jet fuel thermal oxidation test. Current practice requires manual drop counting or flow confirmation with the use of volumetric glassware. An apparatus is described to precisely measure the flow rate and automatically perform flow rate check using a drip rate method and/or volumetric method.
摘要:
A thermal oxidation tester is shown for determining thermal stability of a fluid, particularly hydrocarbons, when subjected to elevated temperatures. The tendency of the heated fluid to oxidize and (1) form deposits on a surface of a heater tube and (2) form solids therein which are both measured at a given flow rate, temperature and time. The measured results are used to determine whether a fluid sample passes or fails the test. Specifically constructed containers used in a thermal oxidation tester are shown. These containers (1) reduce physical contact to hydrocarbon test fuels, (2) reduce exposure to hydrocarbon fuel vapors, (3) reduce environmental impact by reducing chemical spills, and (4) improve overall work flow of test.
摘要:
A thermal oxidation tester is shown for determining thermal stability of a fluid, particularly hydrocarbons when subjected to elevated temperatures. The tendency of the heated fluid to oxidize and (1) form deposits on a surface of a heater tube and (2) form solids therein, are both measured at a given flow rate, temperature and time. The measured results are used to determine whether a fluid sample passes or fails the test. At the beginning of each test, the test sample is aerated with dry air until saturation. Simultaneously, the test equipment is primed to remove pockets of air there from. After each test, the test equipment is flushed to remove the test sample there from.
摘要:
A thermal oxidation tester is shown for determining thermal stability of a fluid, particularly hydrocarbons, when subjected to elevated temperatures. The tendency of the heated fluid to oxidize and (1) form deposits on a surface of a heater tube and (2) form solids therein which are both measured at a given flow rate, temperature and time. The measured results are used to determine whether a fluid sample passes or fails the test. Specifically constructed containers used in a thermal oxidation tester are shown. These containers (1) reduce physical contact to hydrocarbon test fuels, (2) reduce exposure to hydrocarbon fuel vapors, (3) reduce environmental impact by reducing chemical spills, and (4) improve overall work flow of test.
摘要:
A thermal oxidation tester is shown for determining thermal stability of a fluid, particularly hydrocarbons when subjected to elevated temperatures. The tendency of the heated fluid to oxidize and (1) form deposits on a surface of a heater tube and (2) form solids therein, are both measured at a given flow rate, temperature and time. The measured results are used to determine whether a fluid sample passes or fails the test. At the beginning of each test, the test sample is aerated with dry air until saturation. Simultaneously, the test equipment is primed to remove pockets of air there from. After each test, the test equipment is flushed to remove the test sample there from.
摘要:
A thermal oxidation tester is shown for determining thermal stability of a fluid, particularly hydrocarbons when subjected to elevated temperatures. The tendency of the heated fluid to oxidize and (1) form deposits on a surface of a heater tube and (2) form solids therein, are both measured at a given flow rate, temperature and time. The measured results are used to determine whether a fluid sample passes or fails the test. Results of the measurements are recorded. The fluid under test is pumped with a low volume, high pressure, single piston pump with only a small fluctuation (pulsation) in output flow.
摘要:
A thermal oxidation tester is shown for determining thermal stability of a fluid, particularly hydrocarbons when subjected to elevated temperatures. The tendency of the heated fluid to oxidize and (1) form deposits on a surface of a heater tube and (2) form solids therein, are both measured at a given flow rate, temperature and time. The measured results are used to determine whether a fluid sample passes or fails the test. Results of the measurements are recorded. The fluid under test is pumped with a low volume, high pressure, single piston pump with only a small fluctuation (pulsation) in output flow.