摘要:
A dual chamber pacemaker is provided, preferably either DDDR or DDIR, having logic hardware and/or software for normally carrying out the DDIR or DDDR mode of operation, and further having means for carrying out a safe atrial pace method of operation in circumstances where normal atrial pacing could otherwise be competitive or result in loss of atrial capture. The pacemaker has means for detecting an atrial sense during PVARP, timing out a delay from the time of the early atrial sense, delivering a safe atrial pulse at the end of the delay, and controlling generation of a ventricular pace pulse in synchronous relation to the safe atrial pulse and with at least a minimum AV interval.
摘要:
A method and apparatus for automatic determination of a pacemaker patient's pacing stimulation threshold. Circuitry is provided in a pacemaker for obtaining a signal reflecting cardiac impedance, which is known to reliably reflect certain aspects of cardiac function. Circuitry is also provided for monitoring the cardiac impedance waveform during a predetermined capture detect window following delivery of stimulating pulses. One or more values are derived which characterize the morphology of the impedance waveform during the capture detect window associated with each stimulation pulse delivered. These values are compared to predetermined control values in order to assess whether a stimulation pulse has achieved cardiac capture. The assessment of whether cardiac capture has been achieved is also based partly upon the conventional sensing of atrial and/or ventricular cardiac signals occurring during the capture detect window. In one embodiment of the invention, the control values against which impedance waveform characterization values are compared are obtained by delivering a series of stimulation pulses having sufficient energy to ensure that capture is achieved, and by monitoring the impedance waveform during delivery of these pulses.
摘要:
A dual chamber, rate-responsive pacemaker for pacing a patient's heart novelly allows tracking of the patient's sinus rate when the sinus rate is slightly less than the sensor rate; i.e., within a predetermined "Sinus Preference Window Maximum Rate Drop." Pacing at the sensor rate occurs when the sensor rate exceeds the sinus rate by more than the Sinus Preference Window Maximum Rate Drop. In the preferred embodiment a Sinus Preference Window, which occurs at the end of the ventricle-to-atrium interval, is decremented with successive heart beats by a programmable delta to increase the pacing rate until the Sinus Preference Window reaches zero, in which case the pacemaker paces at the sensor rate. The Sinus Preference Window is reset to its maximum value upon either the detection of an atrial sensed event, or upon the expiration of a programmable Sinus Check Interval. The pacemaker paces at the sinus rate or the maximum rate drop rate, whichever is faster, for a number of recovery beats, and then increments the pacing rate up to the sensor rate.
摘要:
An automatic, body-implantable medical device having at least two modes of operation is disclosed. The device is provided with circuitry for automatically detecting when the device has been implanted in a patient, so that the device can automatically switch from a first mode to a second mode of operation upon implantation. In one embodiment, the first mode is a power conserving mode in which one or more non-essential sub-systems of the device are disabled. Prior to detection of implant, at least two conditions of the device known to reflect whether the device has been implanted are monitored. After implant has been detected, situations in which power to the device is disrupted and then restored will cause the device to enter a predefined "power-on-reset" mode of operation. Prior to detection of implant, however, such conditions do not result in the device entering the power-on-reset mode, or this mode is reset. An Elective Replacement Indicator mode is also used which is based on measured impedance against a target battery impedance. When the measured battery impedance reaches the target level, the voltage of the battery that precipitates an ERI condition is modified.
摘要:
A cardiac pacemaker improves battery longevity by automatically providing optimized threshold amplitude and pulse width values. During capture verification and threshold searching, the pacemaker delivers a pacing pulse and a rapid, maximum amplitude backup pulse in case the pacing pulse fails to capture a patient's heart. Unlike the prior art, the backup pulse is delivered before a predefined Vulnerable Period (during which time pacing might lead to re-entrant tachycardia or fibrillation). This results in threshold searching which is quick, accurate and with smaller rate drops during loss of capture. In another aspect of the present invention, a diagnostic strength-duration curve is approximated by first setting the pulse width to a maximum value and determining the amplitude threshold (rheobase), and then by doubling the amplitude and determining the pulse width threshold (chronaxie).
摘要:
A method and apparatus for automatic determination of a pacemaker patient's pacing stimulation threshold. Circuitry is provided in a pacemaker for obtaining a signal reflecting cardiac impedance, which is known to reliably reflect certain aspects of cardiac function. Circuitry is also provided for monitoring the cardiac impedance waveform during a predetermined capture detect window following delivery of stimulating pulses. One or more values are derived which characterize the morphology of the impedance waveform during the capture detect window associated with each stimulation pulse delivered. These values are compared to predetermined control values in order to assess whether a stimulation pulse has achieved cardiac capture. The assessment of whether cardiac capture has been achieved is also based partly upon the conventional sensing of atrial and/or ventricular cardiac signals occurring during the capture detect window. In one embodiment of the invention, the control values against which impedance waveform characterization values are compared are obtained by delivering a series of stimulation pulses having sufficient energy to ensure that capture is achieved, and by monitoring the impedance waveform during delivery of these pulses.
摘要:
A method and apparatus for automatic determination of a pacemaker patient's pacing stimulation threshold. Circuitry is provided in a pacemaker for obtaining a signal reflecting cardiac impedance, which is known to reliably reflect certain aspects of cardiac function. Circuitry is also provided for monitoring the cardiac impedance waveform during a predetermined capture detect window following delivery of stimulating pulses. One or more values are derived which characterize the morphology of the impedance waveform during the capture detect window associated with each stimulation pulse delivered. These values are compared to predetermined control values in order to assess whether a stimulation pulse has achieved cardiac capture. The assessment of whether cardiac capture has been achieved is also based partly upon the conventional sensing of atrial and/or ventricular cardiac signals occurring during the capture detect window. In one embodiment of the invention, the control values against which impedance waveform characterization values are compared are obtained by delivering a series of stimulation pulses having sufficient energy to ensure that capture is achieved, and by monitoring the impedance waveform during delivery of these pulses.
摘要:
A method and apparatus for variable rate cardiac stimulation, wherein sudden drops in the rate of delivery of stimulation pulses are avoided by means of rate smoothing and peak rate support functions. In one embodiment, circuitry in a cardiac pulse generator detects atrial events and maintains an updated value of the A-A time intervals between certain atrial events. If a preset ratio or total of these A-A intervals are found to have been shorter than the updated value by at a least a predetermined amount of time, a rate smoothing function is activated wherein the rate of delivery of stimulating pulses is prevented from changing, from cycle to cycle, by more than a predetermined maximum amount. A peak rate support function preferably employs the same updated value in the computation of "escape" intervals. Following the latest A-A interval, if that A-A interval is less than the updated value, then the updated value is used as the new escape interval. If the latest A-A interval is greater than or equal to the updated value but less than the previous updated value, the current escape interval is used as the new escape interval. If the latest A-A interval is less than both the previous updated value and the current updated value, the value updated is used as the new escape interval, and the pulse generator enters a decay mode wherein the escape interval is gradually and incrementally lengthened to prevent sudden changes in the rate of delivery of stimulation pulses.
摘要:
A dual chamber, rate-responsive pacemaker for pacing a patient's heart novelly allows tracking of the patient's sinus rate when the sinus rate is slightly less than the sensor rate; i.e., within a predetermined "Sinus Preference Window Maximum Rate Drop." Pacing at the sensor rate occurs when the sensor rate exceeds the sinus rate by more than the Sinus Preference Window Maximum Rate Drop. In the preferred embodiment a Sinus Preference Window, which occurs at the end of the ventricle-to-atrium interval, is decremented with successive heart beats by a programmable delta to increase the pacing rate until the Sinus Preference Window reaches zero, in which case the pacemaker paces at the sensor rate. The Sinus Preference Window is reset to its maximum value upon either the detection of an atrial sensed event, or upon the expiration of a programmable Sinus Check Interval. The pacemaker paces at the sinus rate or the maximum rate drop rate, whichever is faster, for a number of recovery beats, and then increments the pacing rate up to the sensor rate.
摘要:
A pacing protocol is provided that reduces or minimizes ventricular pacing in favor of intrinsic conduction. When operating in a mode that provides ventricular pacing, a series of conduction checks are performed to determine if intrinsic conduction has returned. These conduction checks occur according to a predetermined pattern that generally includes longer intervals between subsequent attempts. The AV interval provided for dual chamber based pacing is modulated and generally moves from a larger value to a nominal value as the interval between unsuccessful conduction checks increases.