摘要:
A power management system may employ a power source, a distribution system between the power source and electrical loads and an energy accumulator. The accumulator may comprise a plurality of energy processing blocks. Each block may have a limited number of energy storage cells connected in series to produce first voltage. A second higher output voltage from the accumulator may be achieved though integrated DC-DC, DC-AC and AC-DC conversion with intermediate boost of AC voltage through high frequency transformers. Bidirectional power flow may be achieved with high efficiency during charge and discharge of the accumulator. Secondary windings of the transformers may be connected with one another in series so that the accumulator can transfer energy between the distribution system and any one or all of the energy processing units in a fault-tolerant and efficient manner.
摘要:
An online method and apparatus for determining state of charge (SoC) and state of health (SoH) of batteries on platforms that present dynamic charge and discharge environments is disclosed. A rested open circuit voltage (OCV) may be estimated online using a battery dynamic model along with measured terminal voltage, current and temperature. The SoC and SoH can then be determined from this estimated OCV. The apparatus and methods may estimate SoC and SoH of a battery in a real-time fashion without the need to a) disconnect the battery system from service; b) wait for a predefined rest time; or c) depolarize the battery.
摘要:
A power management system may comprise a generative power source, a main bus between the generative power source and electrical loads, a energy accumulator and a main bi directional power converter interposed between the main bus and the energy accumulator unit. The energy accumulator may comprise a plurality of energy storage blocks. The energy storage blocks may individually comprise energy storage units and control units with dedicated DC/DC bidirectional power converters.
摘要:
According to the features discussed herein, through a single generalized arc-fault detection algorithm, various types of series and/or parallel arc faults can be detected without any nuisance trip for either AC or DC Electric Power Systems. Running Discrete Fourier Series (RDFS) formulation for nuisance-free operation and cost-effective implementation is developed. Unlike other methods which require numerous source and load-side current and voltage measurements, only source side current is required. An arc detector may include a first detector to monitor variations of a magnitude of a fundamental component of a current, and a second detector to monitor an overload condition based in an i2t calculation. A method may include obtaining a first cycle of a fundamental component of a current, obtaining a second cycle of the fundamental component of the current, and comparing the first cycle of the fundamental component of the current and the second cycle of the fundamental component of the current to determine if a difference of the first cycle and the second cycle is greater than a threshold amount.
摘要:
A system adapted to regulate a voltage of a supply bus is described. The system includes a source adapted to supply a source current to the supply bus, a load adapted to draw a load current from the supply bus, and a bi-directional voltage to current converter adapted to provide an output current, where the output current is at least partly based on the source current and the load current.
摘要:
A matrix converter may be provided with AC switches that comprise bi-directional sets of semiconductor switches that are gated with a common gating link. A low loss diode-bridge based snubber may facilitate introduction of time delay between sequential operations of the bi-directional set of semiconductor switches. The matrix converter may be operated in a three-phase mode with only one gating signals for each AC switch, in contrast to prior-art matrix converters which may require use multiple gating signals for each AC switch.
摘要:
A multi-module bidirectional power converter may comprise a low side common node, a high side common node and at least first and second bidirectional DC/DC converter modules. The modules may comprise first and second low voltage switches, first and second high voltage switches and a transformer. The transformer may comprise a low side winding having first and second legs and a high side winding having first and second legs. The first leg of the low side winding may be connected with the first and second low voltage switches of the module. The second leg of the low side winding may be connected with the low side common node of the multi-module bidirectional power converter. The first leg of the high side winding may be connected with the first and second high voltage switches of the module. The second leg of the high side winding may be connected to the high side common node of the multi-module bidirectional power converter. Such an arrangement may provide operability of the multi-module bidirectional power converter with any one or more of the modules so that efficiency is maintained when electrical loads are high and so that Zero Voltage Switching is maintained when electrical loads are low.
摘要:
According to the features discussed herein, through a single generalized arc-fault detection algorithm, various types of series and/or parallel arc faults can be detected without any nuisance trip for either AC or DC Electric Power Systems. Running Discrete Fourier Series (RDFS) formulation for nuisance-free operation and cost-effective implementation is developed. Unlike other methods which require numerous source and load-side current and voltage measurements, only source side current is required. An arc detector may include a first detector to monitor variations of a magnitude of a fundamental component of a current, and a second detector to monitor an overload condition based in an i2t calculation. A method may include obtaining a first cycle of a fundamental component of a current, obtaining a second cycle of the fundamental component of the current, and comparing the first cycle of the fundamental component of the current and the second cycle of the fundamental component of the current to determine if a difference of the first cycle and the second cycle is greater than a threshold amount.