摘要:
An aspect of the present invention relates to system and method for substantially obstructing magnetic flux. One aspect of the present invention provides an apparatus for substantially obstructing at least one magnetic flux path between an ambient space and a protected volume. The apparatus includes an inner shield, substantially enclosing the protected volume. The inner shield has at least one inner shield aperture extending therethrough to allow external access to the protected volume. An outer shield substantially encloses the inner shield. The outer shield has at least one outer shield aperture extending therethrough to allow internal access from the ambient space. The apparatus is configured to impede magnetic flux between at least one inner shield aperture and at least one outer shield aperture.
摘要:
An aspect of the present invention relates to system and method for substantially obstructing magnetic flux. One aspect of the present invention provides an apparatus for substantially obstructing at least one magnetic flux path between an ambient space and a protected volume. The apparatus includes an inner shield, substantially enclosing the protected volume. The inner shield has at least one inner shield aperture extending therethrough to allow external access to the protected volume. An outer shield substantially encloses the inner shield. The outer shield has at least one outer shield aperture extending therethrough to allow internal access from the ambient space. The apparatus is configured to impede magnetic flux between at least one inner shield aperture and at least one outer shield aperture.
摘要:
An aspect of the present invention relates to system and method for substantially obstructing magnetic flux. One aspect of the present invention provides an apparatus for substantially obstructing at least one magnetic flux path between an ambient space and a protected volume. The apparatus includes an inner shield, substantially enclosing the protected volume. The inner shield has at least one inner shield aperture extending therethrough to allow external access to the protected volume. An outer shield substantially encloses the inner shield. The outer shield has at least one outer shield aperture extending therethrough to allow internal access from the ambient space. The apparatus is configured to impede magnetic flux between at least one inner shield aperture and at least one outer shield aperture.
摘要:
A cell in one example comprises an alkali metal and a coating of parylene on an interior surface of the cell. In one implementation, the alkali metal may be an optically pumped gaseous phase of an alkali metal. The parylene coating minimizes interaction of the excited state of the alkali metal, increases lifetime of the excited state, and minimizes interaction of nuclear spin states with the cell walls.
摘要:
An NMR gyroscope in one example comprises a support structure affixed within an enclosure, an NMR cell affixed to the support structure, a plurality of permanent magnets disposed about the NMR cell to produce a magnetic field within the cell, and a field coil disposed proximate the cell to produce a modulated magnetic field transverse to the magnetic field produced by the permanent magnets.
摘要:
An NMR gyroscope in one example comprises a support structure affixed within an enclosure, an NMR cell affixed to the support structure, a plurality of permanent magnets disposed about the NMR cell to produce a magnetic field within the cell, and a field coil disposed proximate the cell to produce a modulated magnetic field transverse to the magnetic field produced by the permanent magnets.
摘要:
The method and apparatus in one embodiment may have: a gyro housing containing a bias field; a bias field that generates a stable axial magnetic field; Xenon or other gas contained within at least a portion of the axial magnetic field, Xenon or other gas nuclear spins precessing at a constant angular rate with respect to the gyro housing in response to the axial magnetic field; wherein reversing a polarity of the bias field reverses a polarity of the magnetic field and a polarity of the precession of the Xenon or other gas nuclear spin, and wherein a reversing of the polarity of the gyro scalefactor thereby results without reversing a polarity of the gyro bias.
摘要:
A method comprises the steps of providing a nuclear magnetic resonance cell with first, second, and third nuclear moment gases and at least one optically pumpable substance; obtaining first, second, and third measured precession frequencies that correspond to the first, second, and third nuclear moment gases, wherein the first, second, and third measured precession frequencies are altered from corresponding first, second, and third Larmor precession frequencies by a rotational rate and corresponding first, second, and third local magnetic fields; and determining the rotational rate with compensation for the first, second, and third local magnetic fields through employment of the first, second, and third measured precession frequencies.
摘要:
A cell in one example comprises an alkali metal and a coating of parylene on an interior surface of the cell. In one implementation, the alkali metal may be an optically pumped gaseous phase of an alkali metal. The parylene coating minimizes interaction of the excited state of the alkali metal, increases lifetime of the excited state, and minimizes interaction of nuclear spin states with the cell walls.
摘要:
The intensity and frequency variation due to retroscatter in a ring laser gyroscope are determined and used to correct the gyro scale factor. The orthogonal types of scatter due to dielectric variation and due to height variation, which lead to common mode phase delays of 0 and .pi./2 respectively are taken into account in calculating the correction to the scale factor. The scale factor errors are determined in terms of observable quantities. Scale factor error control is accomplished by extracting a portion of both of the two counterpropagating light beams and measuring their respective intensities, creating intensity modulation indices representative of the sum and difference intensities, using closed loop control of the real-time difference between the intensities of the beam in the ring laser gyro to reduce scale factor variation using push-pull mirror control of at least two mirrors. The residual error after push-pull mirror control minimization is output for use by a navigation system computer.