Abstract:
A physical unit of a chip-scale nuclear magnetic resonance (NMR) gyroscope, the physical unit including: a vertical cavity surface emitting laser (VCSEL), a silicon sheet including a recess, a glass sheet, an atomic vapor chamber, a first right angle prism, a quarter-wave plate, a polarizing beam splitter, and photodetectors. The recess includes sides including reflecting mirrors. The glass sheet is disposed on the silicon sheet. The recess of the silicon sheet is in a structure of an inverted square frustum, and the reflecting mirrors are disposed on sides of the recess. The atomic vapor chamber is an enclosed region formed between the recess and the glass sheet. The atomic vapor chamber is filled with alkali metal atoms, one or a plurality of inert gas atoms, and one or a plurality of buffer gases.
Abstract:
One example includes a sensor system. A cell system includes a pump laser which generates a pump beam to polarize alkali metal vapor enclosed within a sensor cell. A detection system includes a probe laser to generate a probe beam. The detection system can calculate at least one measurable parameter based on characteristics of the probe beam passing through the sensor cell resulting from precession of the polarized alkali metal vapor in response to an applied magnetic field. A pump beam control system pulse-width modulates a frequency of the pump beam to provide a pulse-width modulated (PWM) pump beam, and controls a duty-cycle of the PWM pump beam based on the characteristics of the probe beam passing through the sensor cell in a feedback manner to control polarization uniformity of the alkali metal vapor and to mitigate the effects of AC Stark shift on the at least one measurable parameter.
Abstract:
A solid-state gyroscope apparatus based on ensembles of negatively charged nitrogen-vacancy (NV−) centers in diamond and methods of detection are provided. In one method, rotation of the NV− symmetry axis will induce Berry phase shifts in the NV− electronic ground-state coherences proportional to the solid angle subtended by the symmetry axis. A second method uses a modified Ramsey scheme where Berry phase shifts in the 14N hyperfine sublevels are employed.
Abstract:
An n-NV-based gyroscope is provided that includes a diamond structure implanted with a plurality of NV centers, whose nuclear spins form a spin gyroscope. A number of radio-frequency (rf) coils and microwave (μw) co-planar waveguides are fabricated on the diamond structure to provide a sensitive and stable three-axis gyroscope in the solid state while achieving gyroscopic sensitivity by exploiting the coherence time of the 14N nuclear spin associated with the NV centers in the diamond structure combined with the efficient optical polarization and measurement of electronic spin.
Abstract:
One embodiment includes a nuclear magnetic resonance (NMR) gyroscope system. The system includes a vapor cell comprising an alkali metal and a plurality of gyromagnetic isotopes and a pump laser configured to generate an optical pump beam configured to spin-polarize the alkali metal. The system also includes a probe laser that generates an optical probe beam and a detection system configured to monitor the optical probe beam and to calculate a rotation of the NMR gyroscope system about a sensitive axis based on a modulation of the optical probe beam in response to precession of the plurality of gyromagnetic isotopes resulting from the spin-polarization of the alkali metal. The system further includes a calibration controller that modulates a characteristic of the optical pump beam to substantially mitigate bias errors associated with the gyromagnetic isotopes in the calculation of the rotation of the NMR gyroscope system about the sensitive axis.
Abstract:
Compact inertial measurement systems and methods based on atom interferometry. Certain examples provide a combination atomic accelerometer-gyroscope configured to recapture and cycle atom samples through atom interferometers arranged to allow the next measurement to use the atoms from the previous measurement. Examples of the apparatus provide inertial measurements indicative of rotation for different inertial axes by applying atom interferometry to a plurality of atom samples launched in opposite directions to allow for measurement of both acceleration and rotation rates. In some examples, the inertial measurement apparatus provide a combined atomic gyroscope and an atomic accelerometer in a compact six Degrees of Freedom (6 DOF) IMU.
Abstract:
Apparatuses and methods for sensing rotations are provided. One embodiment provides an apparatus including a cell containing alkali and active nuclear magnetic resonance (NMR) isotope(s) atoms, a magnet providing a first magnetic field, a light source emitting diverging light that passes through the cell, and optics which circularly polarize the diverging light. A longitudinal component of the diverging light optically pumps the alkali atoms and, in conjunction with a second magnetic field orthogonal to the first magnetic field or a modulation of the diverging light, causes the alkali and NMR isotope atoms to precess about the first field. A transverse component of the diverging light acts as a probe beam for observing the precession. The apparatus further includes a polarizing beam splitter to split light that has passed through the cell into orthogonally polarized components detected by respective photodetectors and used to determine rotations relative to an inertial frame.
Abstract:
A solid-state gyroscope apparatus based on ensembles of negatively charged nitrogen-vacancy (NV−) centers in diamond and methods of detection are provided. In one method, rotation of the NV− symmetry axis will induce Berry phase shifts in the NV− electronic ground-state coherences proportional to the solid angle subtended by the symmetry axis. A second method uses a modified Ramsey scheme where Berry phase shifts in the 14N hyperfine sublevels are employed.
Abstract:
One embodiment of the invention includes an atomic sensing system. The system includes an atomic sensing device configured to generate an output signal along an output axis in response to a plurality of control parameters. The system also includes a signal generator configured to apply a reference signal to a cross-axis that is approximately orthogonal to the output axis. The system also includes a phase measurement system configured to demodulate the output signal relative to the reference signal to measure a relative phase alignment between the output axis and a physical axis of the atomic sensing device based on the reference signal.
Abstract:
Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.