Abstract:
X-ray photons are counted as to each of energy bands (bins) to which optimum energy ranges are provided, and an image with reduced noise is displayed in a short time. An energy range of at least one of multiple energy bands in an X-ray detector is adjusted, on the basis of a distribution of degrees of X-ray attenuation at respective energy levels, the distribution of degrees of X-ray attenuation being measured in advance with respect to a predetermined direction of a subject. By using the X-ray detector with the energy bands after the adjustment, photon-counting CT imaging is performed.
Abstract:
A highly accurate pulse height spectrum is generated within a short amount of time, further cost of a radiation imaging apparatus being reduced by employing a detector that performs calibration using the pulse height spectrum. Provided is a pulse height spectrum acquisition device of a radiation detector including multiple counting units for counting a detected signal obtained by detecting incident X-rays, when a value of the detected signal is equal to or larger than a threshold, and for outputting a count value of each counting unit. This device is provided with a threshold setter configured to set to a first counting unit, a first threshold V1 as a threshold for a first measurement, along with setting to a second counting unit, a second threshold V2 larger than the first threshold V1, and to set to the first counting unit, a reconfigured threshold V1′ as the threshold for a second measurement, the reconfigured threshold V1′ being different from the first threshold V1, a measurement controller configured to perform multiple measurements, and a pulse height spectrum generator configured to generate a pulse height spectrum for the first threshold V1 of the first counting unit, on the basis of a difference in the count values from the first counting unit and the second counting unit, obtained by the multiple measurements performed by the measurement controller.
Abstract:
The present invention is directed to make a photon-counting CT apparatus capable of more accurate data acquisition. Such apparatus is provided with a reference detection unit and a time measuring instrument to measure temporal fluctuations in a rotational direction of an X-ray irradiation unit. The apparatus corrects temporal fluctuations in the rotational direction involved in data measured by the reference detection unit, using time measurement data which is output by the time measuring instrument. Using corrected measurement data measured by the reference detection unit, the apparatus makes corrections of fluctuations pertaining to the X-ray tube of the X-ray irradiation unit and pile-up. Data corrections with high accuracy are thus enabled.
Abstract:
A radiation imaging apparatus provided with a detector capable of improving correction accuracy at a high counting rate. The present invention is provided with: grids that remove scattered beams that emanate from an object; and a plurality of detector sub-pixels arranged so as to divide the gap between the grids into three or more segments, wherein the area of each of the detector sub-pixels located below the wall surface of the grids is larger than that of each of the other detector sub-pixels in a planar view. The size of each of the detector sub-pixels not located below the wall surface of the grids is expressed as (Pg−Tg−Lsplit×2)/N, where Pg represents the pitch between the grids, Tg represents the thickness of each of the grids, and N represents the number of segments formed by the detector sub-pixels between the grids.
Abstract:
A material decomposition apparatus for performing decomposition of a material in an object. The apparatus includes a data storage section for storing correction data preliminarily generated by decomposing one of three or more materials into the other two materials, a data input section to which radiation data of the object is inputted, the radiation data being divided into a plurality of energy levels, and a decomposition processing section for repeatedly performing two-material decomposition for decomposition of the other two materials of the three or more materials using the radiation data at different energy levels and the correction data to perform decomposition of the inside of the object into the three or more materials.
Abstract:
When two detector panels are rotationally moved around the entire circumference of a region of interest and projection images of the region of interest are captured during the rotational movement, the respective detector panels are moved along the tangential direction of the rotational movement to a position where the union of the capturing ranges of the projection images captured by the respective detector panels covers the entire region of interest. The projection images captured by the respective detector panels are used to reconstruct a transaxial image of the region of interest.
Abstract:
This radiation detection element (1) is provided with: a crystal part (10) that is formed from a mixed ion-electron conductor, which is a compound wherein thallium ions are bonded with bromine ions; a metal electrode (13a) that is formed on one surface of the crystal part (10); and a metal electrode (13b) that is formed on a surface which is on the reverse side of the surface where the metal electrode (13a) is formed. The crystal part (10) has metal-containing parts (12) in the surfaces where the metal electrodes (13a, 13b) are respectively formed, said metal-containing parts (12) containing thallium that is obtained by selectively removing elemental bromine and neutralizing thallium ions. Consequently, there are provided: a practical radiation detection element which is suppressed in the occurrence of problems caused by polarization; and a method for producing this radiation detection element.
Abstract:
Noise is reduced for a medical image for which noise cannot be quantified by a general-purpose image quality evaluation index. An image processor has a preprocessor that generates input images including an original image and one or more images with reduced noise compared with the original image; and a noise reduction processor outputs an image, which is obtained by reducing noise from the original image based on the input images, by applying a learned network. The learned network used in the noise reduction processor is constructed by performing deep learning using a plurality of learning sets in which one or more of a medical image including noise, a noise-reduced image obtained by performing noise reduction processing on the medical image, and an intermediate image obtained during the noise reduction processing are input images and a correct image is obtained based on the input images an output image.
Abstract:
A flat pixel (20) is a single unit composing a radiation detector and is configured so as to be divided into at least four subpixels (21) such that even if a prescribed number of subpixels (21) are removed from each pixel (20) in order of largest effective area, the centroid (51) of the effective area of the entirety of the remaining subpixels (21) is positioned within a similar-shape region (30) having the same centroid (50) as the pixel (20) and having sides of lengths that are half those of the pixel (20).
Abstract:
A unit (33) for generating count images for separate energy windows generates main measured count images and auxiliary measured count images on the basis of gamma ray (6) count information measured by a detector head (10). A main measurement window direct ray count rate estimation unit (42) estimates a count rate for direct gamma rays in a main measurement energy window, doing so by subtracting a scattered gamma ray count rate for an auxiliary measurement energy window, which has been estimated from an auxiliary measured count image and detector response data by an auxiliary measurement window scattered ray count rate estimation unit (41), from the main measured count image.