Abstract:
There is disclosed an image processing method in which a video signal is inputted from an imaging optical system in which astigmatism remains, and is displayed on a two-dimensional display apparatus. Based on the circumferential direction modulation factor and radial direction modulation factor of a lens used in the imaging optical system, a signal including the amount of vertical or horizontal modulation factor correction proportional to an nth power (n is an integer greater than 1) of a distance from a center position of a screen of the two-dimensional display apparatus is outputted for at least one vertical or horizontal frequency of the two-dimensional display apparatus.
Abstract:
An imaging device is implemented that corrects contour distortion of the telephoto and wide-angle ends of zoom lens and a reflex lens where the way the contour is distorted significantly differs between the centerward and receding directions. A UHDTV imaging device with a landscape aspect ratio such as 16:9 uses a high-power zoom lens or a reflex lens, obtains type information and aperture ratio information of the lens, obtains and stores coma aberration information of the lens, and individually and independently calculates the amounts of left and right horizontal contour correction in proportion to a distance from the center of a screen (h−H/2), based on the obtained type information and aperture ratio information of the lens and the stored coma aberration information, and individually and independently performs left and right horizontal contour correction, using one of multi-stage horizontal contour correction, multi-stage vertical contour correction, and multi-stage oblique contour correction.
Abstract:
The purpose of the invention is to reduce Cartesian loop transmission delay for compensating the distortion occurring in a high-frequency power amplifier and make the distortion compensation converge quickly, thereby increasing the efficiency. A transmission device has: a high-frequency power amplifier; a pre-distortion compensation circuit for independently generating the coefficients of the distortion compensation signal for each order of the odd and even symmetric distortions of the high-frequency power amplifier; a means for varying the power supply voltage of the high-frequency power amplifier with an orthogonal modulation OFDM input signal; a digital frequency converter; a high-frequency band ADC; and a high-frequency band DAC. In the transmission device, an error distortion compensation signal is created from the output of the high-frequency power amplifier and the orthogonal modulation OFDM input signal, and a delay device is inserted at the previous stage of a distortion compensation circuit, said delay device having a delay equivalent to a time constant for varying the power supply voltage of the high-frequency power amplifier with the orthogonal modulation OFDM input signal.
Abstract:
The purpose of the invention is to reduce Cartesian loop transmission delay for compensating the distortion occurring in a high-frequency power amplifier and make the distortion compensation converge quickly, thereby increasing the efficiency. A transmission device has: a high-frequency power amplifier; a pre-distortion compensation circuit for independently generating the coefficients of the distortion compensation signal for each order of the odd and even symmetric distortions of the high-frequency power amplifier; a means for varying the power supply voltage of the high-frequency power amplifier with an orthogonal modulation OFDM input signal; a digital frequency converter; a high-frequency band ADC; and a high-frequency band DAC. In the transmission device, an error distortion compensation signal is created from the output of the high-frequency power amplifier and the orthogonal modulation OFDM input signal, and a delay device is inserted at the previous stage of a distortion compensation circuit, said delay device having a delay equivalent to a time constant for varying the power supply voltage of the high-frequency power amplifier with the orthogonal modulation OFDM input signal.
Abstract:
In an image correction method and an image capture device, a one-frame addition average calculation unit calculates a one-frame addition average value. If the one-frame addition average value falls within an appropriate range, a determination circuit inputs image data for one frame to an adder and the adder adds the image data to a cumulative correction value to update the correction value. The updated correction value is stored in a frame memory. If the one-frame addition average value is outside the appropriate range, the image data for one frame is discarded. After updating the cumulative correction value until the number of updates reaches a prescribed number, an FPN correction value is calculated by dividing the cumulative correction value stored in the frame memory by the prescribed number, and an image is corrected by subtracting the FPN correction value from the image data inputted at the time of imaging.
Abstract:
The purpose of the present invention is to correct the reduced degree of modulation in a diagonal direction in a four-plate camera having a frame memory and R, G1, G2, and B image pickup elements among which two green image pickup elements (G1, G2) shift pixels diagonally. This image pickup method is provided for an image pickup device having two green image pickup elements, a red image pickup element, and a blue image pickup element among which the two green image pickup elements shift pixels diagonally. The method includes, with respect to a contour correction target pixel, generating a diagonal contour correction signal from respective image signals of two diagonally upper left pixels, two diagonally upper right pixels, two diagonally lower left pixels, and two diagonally lower right pixels, and adding the diagonal contour correction signal to an image signal of the contour correction target pixel.
Abstract:
A color-separation optical system for image capture includes three rolling shutter CMOS image capturing elements of B, G and R, respectively capturing: an image of B at the speed of an integer N multiple of the number of output picture frames, an image of G at the speed of an integer M multiple of N+1, and an image of R at the speed of the integer M multiple of N+1. The vertical synchronization phases of the captured image frames of B, G and R, are offset by approximately half the vertical synchronization period of an even multiple of speed such that the center phases of the captured image frames of B, G and R have approximately the same vertical synchronization phase. A picture to be output uses the vertical effective pictures of the captured image frames having approximately the same vertical synchronization phase.